LoOp: Looking for Optimal Hard Negative Embeddings for Deep Metric
Learning
- URL: http://arxiv.org/abs/2108.09335v1
- Date: Fri, 20 Aug 2021 19:21:33 GMT
- Title: LoOp: Looking for Optimal Hard Negative Embeddings for Deep Metric
Learning
- Authors: Bhavya Vasudeva, Puneesh Deora, Saumik Bhattacharya, Umapada Pal,
Sukalpa Chanda
- Abstract summary: We propose a novel approach that looks for optimal hard negatives (LoOp) in the embedding space.
Unlike mining-based methods, our approach considers the entire space between pairs of embeddings to calculate the optimal hard negatives.
- Score: 17.571160136568455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep metric learning has been effectively used to learn distance metrics for
different visual tasks like image retrieval, clustering, etc. In order to aid
the training process, existing methods either use a hard mining strategy to
extract the most informative samples or seek to generate hard synthetics using
an additional network. Such approaches face different challenges and can lead
to biased embeddings in the former case, and (i) harder optimization (ii)
slower training speed (iii) higher model complexity in the latter case. In
order to overcome these challenges, we propose a novel approach that looks for
optimal hard negatives (LoOp) in the embedding space, taking full advantage of
each tuple by calculating the minimum distance between a pair of positives and
a pair of negatives. Unlike mining-based methods, our approach considers the
entire space between pairs of embeddings to calculate the optimal hard
negatives. Extensive experiments combining our approach and representative
metric learning losses reveal a significant boost in performance on three
benchmark datasets.
Related papers
- Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
This study proposes a different approach that integrates gradient-based update through continuous relaxation, combined with Quasi-Quantum Annealing (QQA)
Numerical experiments demonstrate that our method is a competitive general-purpose solver, achieving performance comparable to iSCO and learning-based solvers.
arXiv Detail & Related papers (2024-09-02T12:55:27Z) - Two-Stage Triplet Loss Training with Curriculum Augmentation for
Audio-Visual Retrieval [3.164991885881342]
Cross- retrieval models learn robust embedding spaces.
We introduce a novel approach rooted in curriculum learning to address this problem.
We propose a two-stage training paradigm that guides the model's learning process from semi-hard to hard triplets.
arXiv Detail & Related papers (2023-10-20T12:35:54Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Batch Active Learning from the Perspective of Sparse Approximation [12.51958241746014]
Active learning enables efficient model training by leveraging interactions between machine learning agents and human annotators.
We study and propose a novel framework that formulates batch active learning from the sparse approximation's perspective.
Our active learning method aims to find an informative subset from the unlabeled data pool such that the corresponding training loss function approximates its full data pool counterpart.
arXiv Detail & Related papers (2022-11-01T03:20:28Z) - Supervised Contrastive Learning as Multi-Objective Optimization for
Fine-Tuning Large Pre-trained Language Models [3.759936323189417]
Supervised Contrastive Learning (SCL) has been shown to achieve excellent performance in most classification tasks.
In this work, we formulate the SCL problem as a Multi-Objective Optimization problem for the fine-tuning phase of RoBERTa language model.
arXiv Detail & Related papers (2022-09-28T15:13:58Z) - Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems [2.6782615615913348]
This paper presents a new reinforcement learning approach that is based on entropy.
In addition, we design an off-policy-based reinforcement learning technique that maximises the expected return.
We show that our model can generalise to various route problems.
arXiv Detail & Related papers (2022-05-31T09:51:48Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
Existing contrastive learning methods suffer from very low learning efficiency.
Under-clustering and over-clustering problems are major obstacles to learning efficiency.
We propose a novel self-supervised learning framework using a median triplet loss.
arXiv Detail & Related papers (2021-04-18T07:47:10Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - MOPS-Net: A Matrix Optimization-driven Network forTask-Oriented 3D Point
Cloud Downsampling [86.42733428762513]
MOPS-Net is a novel interpretable deep learning-based method for matrix optimization.
We show that MOPS-Net can achieve favorable performance against state-of-the-art deep learning-based methods over various tasks.
arXiv Detail & Related papers (2020-05-01T14:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.