論文の概要: Deep Representation of Imbalanced Spatio-temporal Traffic Flow Data for
Traffic Accident Detection
- arxiv url: http://arxiv.org/abs/2108.09506v1
- Date: Sat, 21 Aug 2021 13:18:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-24 15:38:10.097212
- Title: Deep Representation of Imbalanced Spatio-temporal Traffic Flow Data for
Traffic Accident Detection
- Title(参考訳): 交通事故検出のための不均衡時空間トラヒックフローデータの深い表現
- Authors: Pouya Mehrannia, Shayan Shirahmad Gale Bagi, Behzad Moshiri, Otman
Adam Al-Basir
- Abstract要約: 本稿では,高速道路事故の自動検出のためのLong-Short Term Memory (LSTM) ネットワークを用いたループ検出データの深部表現について検討する。
ミネソタ州ツインシティーズ・メトロの高速道路から収集された実事故およびループ検出データの実験は、LSTMネットワークを用いた交通流データの深部表現が18分以内で高速道路事故を検出する可能性を実証している。
- 参考スコア(独自算出の注目度): 0.3670422696827526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic detection of traffic accidents has a crucial effect on improving
transportation, public safety, and path planning. Many lives can be saved by
the consequent decrease in the time between when the accidents occur and when
rescue teams are dispatched, and much travelling time can be saved by notifying
drivers to select alternative routes. This problem is challenging mainly
because of the rareness of accidents and spatial heterogeneity of the
environment. This paper studies deep representation of loop detector data using
Long-Short Term Memory (LSTM) network for automatic detection of freeway
accidents. The LSTM-based framework increases class separability in the encoded
feature space while reducing the dimension of data. Our experiments on real
accident and loop detector data collected from the Twin Cities Metro freeways
of Minnesota demonstrate that deep representation of traffic flow data using
LSTM network has the potential to detect freeway accidents in less than 18
minutes with a true positive rate of 0.71 and a false positive rate of 0.25
which outperforms other competing methods in the same arrangement.
- Abstract(参考訳): 交通事故の自動検出は、交通、公共安全、経路計画の改善に重要な影響を及ぼす。
事故発生から救助隊派遣までの時間の連続的な減少によって多くの命を救うことができ、またドライバーに代替ルートの選択を通知することで多くの走行時間を節約できる。
この問題は、主に事故の稀さと環境の空間的不均一性のために困難である。
本稿では,高速道路事故の自動検出のためのLong-Short Term Memory (LSTM) ネットワークを用いたループ検出データの深部表現について検討する。
LSTMベースのフレームワークは、データの次元を減らしながら、エンコードされた特徴空間におけるクラス分離性を高める。
ミネソタ州ツインシティーズ・メトロ・フリーウェイズから収集された実事故およびループ検出器データを用いた実験により、lstmネットワークを用いた交通流データの深い表現は、高速道路事故を18分以内の真の正の率 0.71 と偽の正の率 0.25 で検出できる可能性が証明された。
関連論文リスト
- Advance Real-time Detection of Traffic Incidents in Highways using Vehicle Trajectory Data [3.061662434597097]
本研究は、ルイジアナ州で最も急激な高速道路であるI-10の車両軌跡データと交通事故データを用いている。
さまざまな機械学習アルゴリズムを使用して、下流の道路区間で事故に遭遇する可能性のある軌道を検出する。
その結果,ランダムフォレストモデルでは,適切なリコール値と識別能力を持つインシデントを予測する上で,最高の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-08-15T00:51:48Z) - IncidentNet: Traffic Incident Detection, Localization and Severity Estimation with Sparse Sensing [0.6787248655856052]
IncidentNetは、トラフィックインシデントの深刻度を分類、ローカライズ、推定するための新しいアプローチである。
本モデルでは,交通交差点に設置したカメラを用いて収集可能な微視的交通データについて検討する。
論文 参考訳(メタデータ) (2024-08-02T04:09:15Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) は、自動運転車における安全なエンドツーエンド運転のためのフレームワークである。
Catは、安全クリティカルなシナリオでエージェントを訓練することで、運転エージェントの安全性を継続的に改善することを目的としている。
猫は、訓練中のエージェントに対抗する敵シナリオを効果的に生成できる。
論文 参考訳(メタデータ) (2023-10-19T02:49:31Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - Deep Reinforcement Learning to Maximize Arterial Usage during Extreme
Congestion [4.934817254755007]
本稿では,過度の混雑中における多車線高速道路の交通渋滞を軽減するための深層強化学習(DRL)手法を提案する。
エージェントは、渋滞した高速道路交通に対する適応的な抑止戦略を学ぶために訓練される。
エージェントは、急激な混雑時の非作用と比較して平均交通速度を21%向上させることができる。
論文 参考訳(メタデータ) (2023-05-16T16:53:27Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
フェールネットは、規模が拡大したミニ都市において、名目上と無謀なドライバーの両方の軌道上で、エンドツーエンドでトレーニングされた、繰り返しニューラルネットワークである。
制御障害、上流での認識エラー、ドライバーのスピードを正確に識別し、名目運転と区別することができる。
速度や周波数ベースの予測器と比較すると、FailureNetのリカレントニューラルネットワーク構造は予測能力を向上し、ハードウェアにデプロイすると84%以上の精度が得られる。
論文 参考訳(メタデータ) (2023-03-21T22:55:51Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - TAD: A Large-Scale Benchmark for Traffic Accidents Detection from Video
Surveillance [2.1076255329439304]
既存の交通事故のデータセットは小規模で、監視カメラからではなく、オープンソースではない。
様々な次元による統合とアノテーションの後に,TADという大規模交通事故データセットが提案されている。
論文 参考訳(メタデータ) (2022-09-26T03:00:50Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
本稿では,交通監視用交差点における事故検出のための新しい効率的な枠組みを提案する。
提案手法は,最先端のYOLOv4法に基づく効率的かつ高精度な物体検出を含む,3つの階層的なステップから構成される。
提案フレームワークのロバスト性は,様々な照明条件でYouTubeから収集した映像シーケンスを用いて評価する。
論文 参考訳(メタデータ) (2022-08-12T19:07:20Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。