論文の概要: IncidentNet: Traffic Incident Detection, Localization and Severity Estimation with Sparse Sensing
- arxiv url: http://arxiv.org/abs/2408.00996v1
- Date: Fri, 2 Aug 2024 04:09:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 14:36:49.806542
- Title: IncidentNet: Traffic Incident Detection, Localization and Severity Estimation with Sparse Sensing
- Title(参考訳): インシデントネット:スパースセンシングによる交通事故検出・局所化・深刻度推定
- Authors: Sai Shashank Peddiraju, Kaustubh Harapanahalli, Edward Andert, Aviral Shrivastava,
- Abstract要約: IncidentNetは、トラフィックインシデントの深刻度を分類、ローカライズ、推定するための新しいアプローチである。
本モデルでは,交通交差点に設置したカメラを用いて収集可能な微視的交通データについて検討する。
- 参考スコア(独自算出の注目度): 0.6787248655856052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prior art in traffic incident detection relies on high sensor coverage and is primarily based on decision-tree and random forest models that have limited representation capacity and, as a result, cannot detect incidents with high accuracy. This paper presents IncidentNet - a novel approach for classifying, localizing, and estimating the severity of traffic incidents using deep learning models trained on data captured from sparsely placed sensors in urban environments. Our model works on microscopic traffic data that can be collected using cameras installed at traffic intersections. Due to the unavailability of datasets that provide microscopic traffic details and traffic incident details simultaneously, we also present a methodology to generate a synthetic microscopic traffic dataset that matches given macroscopic traffic data. IncidentNet achieves a traffic incident detection rate of 98%, with false alarm rates of less than 7% in 197 seconds on average in urban environments with cameras on less than 20% of the traffic intersections.
- Abstract(参考訳): 交通事故検出の先行技術は、高いセンサーカバレッジに依存しており、主に、表現能力に制限のある決定木とランダムな森林モデルに基づいており、その結果、精度の高いインシデントを検出できない。
本稿では,都市環境における疎設置センサから得られたデータに基づいて学習した深層学習モデルを用いて,交通事故の重大度を分類,ローカライズ,推定するための新しいアプローチであるインシデントネットを提案する。
本モデルでは,交通交差点に設置したカメラを用いて収集可能な微視的交通データについて検討する。
微視的トラフィックの詳細と交通事故の詳細を同時に提供するデータセットが利用できないため、マクロ的なトラフィックデータと一致する合成微視的トラフィックデータセットを生成する方法も提案する。
インシデントネットは交通事故検出率98%を達成し、交通交差点の20%未満のカメラを備えた都市環境では、平均197秒で7%未満の誤報率を達成している。
関連論文リスト
- Traffic Scene Parsing through the TSP6K Dataset [109.69836680564616]
高品質なピクセルレベルのアノテーションとインスタンスレベルのアノテーションを備えた,TSP6Kと呼ばれる特殊なトラフィック監視データセットを導入する。
データセットは、既存の運転シーンの何倍ものトラフィック参加者を持つ、より混雑した交通シーンをキャプチャする。
交通シーンの異なるセマンティック領域の詳細を復元するシーン解析のためのディテールリフィニングデコーダを提案する。
論文 参考訳(メタデータ) (2023-03-06T02:05:14Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - TAD: A Large-Scale Benchmark for Traffic Accidents Detection from Video
Surveillance [2.1076255329439304]
既存の交通事故のデータセットは小規模で、監視カメラからではなく、オープンソースではない。
様々な次元による統合とアノテーションの後に,TADという大規模交通事故データセットが提案されている。
論文 参考訳(メタデータ) (2022-09-26T03:00:50Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
本稿では,交通監視用交差点における事故検出のための新しい効率的な枠組みを提案する。
提案手法は,最先端のYOLOv4法に基づく効率的かつ高精度な物体検出を含む,3つの階層的なステップから構成される。
提案フレームワークのロバスト性は,様々な照明条件でYouTubeから収集した映像シーケンスを用いて評価する。
論文 参考訳(メタデータ) (2022-08-12T19:07:20Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Deep Representation of Imbalanced Spatio-temporal Traffic Flow Data for
Traffic Accident Detection [0.3670422696827526]
本稿では,高速道路事故の自動検出のためのLong-Short Term Memory (LSTM) ネットワークを用いたループ検出データの深部表現について検討する。
ミネソタ州ツインシティーズ・メトロの高速道路から収集された実事故およびループ検出データの実験は、LSTMネットワークを用いた交通流データの深部表現が18分以内で高速道路事故を検出する可能性を実証している。
論文 参考訳(メタデータ) (2021-08-21T13:18:04Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
道路交通事故予測におけるデータ不足の根本的な課題を、事故の代わりに緊急ブレーキイベントをトレーニングすることで解決します。
メルセデス・ベンツ車両の緊急ブレーキデータに基づくドイツにおける交通事故予測モデルを実装したプロトタイプを提案する。
論文 参考訳(メタデータ) (2021-02-12T18:17:12Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
深部交通光検出器のための人工的な交通関連トレーニングデータを生成する手法を提案する。
このデータは、任意の画像背景の上に偽のトラフィックシーンをブレンドするために、基本的な非現実的なコンピュータグラフィックスを用いて生成される。
また、交通信号データセットの本質的なデータ不均衡問題にも対処し、主に黄色い状態のサンプルの少なさによって引き起こされる。
論文 参考訳(メタデータ) (2020-11-07T19:57:22Z) - Spatio-Temporal Point Processes with Attention for Traffic Congestion
Event Modeling [28.994426283738363]
本稿では,道路ネットワーク上での交通渋滞イベントをモデル化するための新しいフレームワークを提案する。
交通センサからのカウントデータと交通事故を報告した警察の報告を組み合わせることで、マルチモーダルデータを用いて、渋滞イベントに対する2種類のトリガー効果を捉えることを目指す。
ある場所での現在の交通渋滞は、将来の道路網の混雑を引き起こす可能性があり、交通事故は広範な交通渋滞を引き起こす可能性がある。
論文 参考訳(メタデータ) (2020-05-15T04:22:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。