Exact solvability and two-frequency Rabi oscillation in cavity-QED setup
with moving emitter
- URL: http://arxiv.org/abs/2108.09906v2
- Date: Wed, 5 Jan 2022 08:26:23 GMT
- Title: Exact solvability and two-frequency Rabi oscillation in cavity-QED setup
with moving emitter
- Authors: Mingzhu Weng and Zhihai Wang
- Abstract summary: We investigate the energy spectrum and coherent dynamical process in a cavity-QED setup with a moving emitter.
We find that the vibration of the emitter will induce the effective Kerr and optomechanical interactions.
We explain such behavior by optomechanical interaction induced quantum transition between emitter-cavity dressed states.
- Score: 0.342658286826597
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this paper, we investigate the energy spectrum and coherent dynamical
process in a cavity-QED setup with a moving emitter, which is subject to a
harmonic potential. We find that the vibration of the emitter will induce the
effective Kerr and optomechanical interactions. We generalize the Bogliubov
operators approach which dealt with quantum Rabi model, to our
cavity-emitter-vibration system and obtain the energy spectrum exactly. With
the assistance of Bogliubov operators approach, we obtain the energy spectrum
of the system exactly. Furthermore, we show that the dynamics of the system
exhibit a two-frequency Rabi oscillation behavior. We explain such behavior by
optomechanical interaction induced quantum transition between emitter-cavity
dressed states. We hope that the interaction between cavity mode and moving
emitter will provide a versatile platform to explore more exotic effects and
potential applications in cavity-QED scenario.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Quantum tunneling and level crossings in the squeeze-driven Kerr
oscillator [0.0]
We analyze the spectrum and the dynamics of the effective model up to high energies.
We argue that the level crossings and their consequences to the dynamics are typical to any quantum system with one degree of freedom.
arXiv Detail & Related papers (2023-05-17T18:00:05Z) - Vibration induced transparency: Simulating an optomechanical system via
the cavity QED setup with a movable atom [3.6034001987137763]
We simulate an optomechanical system via a cavity QED scenario with a movable atom and investigate its application in the tiny mass sensing.
We find that the steady-state solution of the system exhibits a multiple stability behavior, which is similar to that in the optomechanical system.
arXiv Detail & Related papers (2022-09-19T06:20:37Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Dynamical emission of phonon pairs in optomechanical systems [6.259066812918972]
Multiphonon state plays an important role in quantum information processing and quantum metrology.
We propose a scheme to realize dynamical emission of phonon pairs based on the technique of stimulated Raman adiabatic passage in a single cavity optomechanical system.
Our proposal can be extended to achieve an antibunched $n$-phonon emitter, which has potential applications for on-chip quantum communications.
arXiv Detail & Related papers (2021-12-26T09:45:56Z) - Dynamics of a multipartite hybrid quantum system with beamsplitter,
dipole-dipole, and Ising interactions [0.0]
We make use of one such hybrid bipartite quantum model, with one subsystem made of a pair of qubits and another comprising a pair of oscillators.
Our basic model is the standard double Jaynes-Cummings system, which is known to support both entanglement transfer and entanglement sudden death.
We show that compared to the beamsplitter or dipole-dipole interaction, the Ising interaction can have a significant positive impact on entanglement sudden death and birth.
arXiv Detail & Related papers (2021-12-21T21:12:08Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.