論文の概要: Construction Cost Index Forecasting: A Multi-feature Fusion Approach
- arxiv url: http://arxiv.org/abs/2108.10155v1
- Date: Wed, 18 Aug 2021 06:10:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-29 12:11:30.271565
- Title: Construction Cost Index Forecasting: A Multi-feature Fusion Approach
- Title(参考訳): 建設コスト指数予測:多機能融合手法
- Authors: Tianxiang Zhan, Yuanpeng He, Fuyuan Xiao
- Abstract要約: 建設コスト指数は建設業界において重要な指標である。
本稿では,情報融合と機械学習を組み合わせることで,時系列予測のための多機能融合フレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.366681576793681
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The construction cost index is an important indicator in the construction
industry. Predicting CCI has great practical significance. This paper combines
information fusion with machine learning, and proposes a Multi-feature Fusion
framework for time series forecasting. MFF uses a sliding window algorithm and
proposes a function sequence to convert the time sequence into a feature
sequence for information fusion. MFF replaces the traditional information
method with machine learning to achieve information fusion, which greatly
improves the CCI prediction effect. MFF is of great significance to CCI and
time series forecasting.
- Abstract(参考訳): 建設コスト指数は建設業界において重要な指標である。
CCIの予測は、非常に実践的な重要性がある。
本稿では,情報融合と機械学習を組み合わせた時系列予測のための多機能融合フレームワークを提案する。
MFFはスライディングウインドウアルゴリズムを用いて時間列を情報融合のための特徴列に変換する関数列を提案する。
MFFは従来の情報手法を機械学習に置き換えて情報融合を実現し、CCI予測効果を大幅に改善する。
MFFはCCIと時系列予測において非常に重要である。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - TimeCMA: Towards LLM-Empowered Time Series Forecasting via Cross-Modality Alignment [21.690191536424567]
TimeCMAは、モーダリティ間のアライメントを伴う時系列予測のフレームワークである。
実データに関する大規模な実験は、提案したフレームワークの精度と効率に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-06-03T00:27:29Z) - Computation and Parameter Efficient Multi-Modal Fusion Transformer for
Cued Speech Recognition [48.84506301960988]
Cued Speech (CS) は、聴覚障害者が使用する純粋視覚符号化法である。
自動CS認識(ACSR)は、音声の視覚的手がかりをテキストに書き起こそうとする。
論文 参考訳(メタデータ) (2024-01-31T05:20:29Z) - Modality-aware Transformer for Financial Time series Forecasting [3.401797102198429]
我々は,textitModality-aware Transformer という,新しいマルチモーダルトランスモデルを提案する。
本モデルでは,対象とする時系列を効果的に予測するために,分類的テキストと数値的時系列の両方のパワーを探索することに長けている。
財務データセットに関する我々の実験は、Modality-aware Transformerが既存の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-10-02T14:22:41Z) - Contrastive Continual Multi-view Clustering with Filtered Structural
Fusion [57.193645780552565]
ビューが事前に収集されるアプリケーションでは、マルチビュークラスタリングが成功します。
データビューがシーケンシャルに収集されるシナリオ、すなわちリアルタイムデータを見落としている。
いくつかの方法が提案されているが、安定塑性ジレンマに閉じ込められている。
フィルタ構造融合を用いたコントラスト連続多視点クラスタリングを提案する。
論文 参考訳(メタデータ) (2023-09-26T14:18:29Z) - EFI: A Toolbox for Feature Importance Fusion and Interpretation in
Python [1.593222804814135]
Ensemble Feature Importance (EFI)は、機械学習(ML)研究者、ドメインエキスパート、意思決定者のためのオープンソースのPythonツールボックスである。
EFIは、頑健で正確な特徴重要性の定量化と、予測問題に対する特徴重要性のより信頼性の高い機械的解釈を提供する。
論文 参考訳(メタデータ) (2022-08-08T18:02:37Z) - Temporal Dependencies in Feature Importance for Time Series Predictions [4.082348823209183]
時系列予測設定における特徴重要度を評価するためのフレームワークであるWinITを提案する。
我々は、ソリューションが時間ステップ内の機能の適切な属性をどのように改善するかを示す。
WinIT は FIT の2.47倍の性能を達成しており、実際のMIMIC の致命的課題における他の特徴的重要な手法である。
論文 参考訳(メタデータ) (2021-07-29T20:31:03Z) - Efficient Data-specific Model Search for Collaborative Filtering [56.60519991956558]
協調フィルタリング(CF)はレコメンダシステムの基本的なアプローチである。
本稿では,機械学習(AutoML)の最近の進歩を動機として,データ固有のCFモデルを設計することを提案する。
ここでキーとなるのは、最先端(SOTA)のCFメソッドを統一し、それらを入力エンコーディング、埋め込み関数、インタラクション、予測関数の非結合ステージに分割する新しいフレームワークである。
論文 参考訳(メタデータ) (2021-06-14T14:30:32Z) - $P^2$ Net: Augmented Parallel-Pyramid Net for Attention Guided Pose
Estimation [69.25492391672064]
拡張ボトルネックとアテンションモジュールによる特徴改善を施したパラレルピラミドネットを提案する。
並列ピラミド構造は、ネットワークによって導入された情報損失を補うために続く。
提案手法は, MSCOCO と MPII のデータセットにおいて, 最適な性能を実現する。
論文 参考訳(メタデータ) (2020-10-26T02:10:12Z) - FMA-ETA: Estimating Travel Time Entirely Based on FFN With Attention [88.33372574562824]
フィードフォワードネットワーク(FFN, FFN, 複数要素自己認識(FMA-ETA)に基づく新しいフレームワークを提案する。
異なるカテゴリの特徴に対処し,情報を意図的に集約する,新しい多要素自己認識機構を提案する。
実験の結果、FMA-ETAは予測精度において最先端の手法と競合し、推論速度は大幅に向上した。
論文 参考訳(メタデータ) (2020-06-07T08:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。