Maximum Likelihood Estimation for Multimodal Learning with Missing
Modality
- URL: http://arxiv.org/abs/2108.10513v1
- Date: Tue, 24 Aug 2021 03:50:54 GMT
- Title: Maximum Likelihood Estimation for Multimodal Learning with Missing
Modality
- Authors: Fei Ma, Xiangxiang Xu, Shao-Lun Huang, Lin Zhang
- Abstract summary: We propose an efficient approach based on maximum likelihood estimation to incorporate the knowledge in the modality-missing data.
Our results demonstrate the effectiveness of the proposed approach, even when 95% of the training data has missing modality.
- Score: 10.91899856969822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal learning has achieved great successes in many scenarios. Compared
with unimodal learning, it can effectively combine the information from
different modalities to improve the performance of learning tasks. In reality,
the multimodal data may have missing modalities due to various reasons, such as
sensor failure and data transmission error. In previous works, the information
of the modality-missing data has not been well exploited. To address this
problem, we propose an efficient approach based on maximum likelihood
estimation to incorporate the knowledge in the modality-missing data.
Specifically, we design a likelihood function to characterize the conditional
distribution of the modality-complete data and the modality-missing data, which
is theoretically optimal. Moreover, we develop a generalized form of the
softmax function to effectively implement maximum likelihood estimation in an
end-to-end manner. Such training strategy guarantees the computability of our
algorithm capably. Finally, we conduct a series of experiments on real-world
multimodal datasets. Our results demonstrate the effectiveness of the proposed
approach, even when 95% of the training data has missing modality.
Related papers
- MMP: Towards Robust Multi-Modal Learning with Masked Modality Projection [10.909746391230206]
Multimodal learning seeks to combine data from multiple input sources to enhance the performance of downstream tasks.
Existing methods that can handle missing modalities involve custom training or adaptation steps for each input modality combination.
We propose Masked Modality Projection (MMP), a method designed to train a single model that is robust to any missing modality scenario.
arXiv Detail & Related papers (2024-10-03T21:41:12Z) - Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
In real-world scenarios, consistently acquiring complete multimodal data presents significant challenges.
This often leads to the issue of missing modalities, where data for certain modalities are absent.
We propose a novel framework integrating parameter-efficient fine-tuning of unimodal pretrained models with a self-supervised joint-embedding learning method.
arXiv Detail & Related papers (2024-07-17T14:44:25Z) - Borrowing Treasures from Neighbors: In-Context Learning for Multimodal Learning with Missing Modalities and Data Scarcity [9.811378971225727]
This paper extends the current research into missing modalities to the low-data regime.
It is often expensive to get full-modality data and sufficient annotated training samples.
We propose to use retrieval-augmented in-context learning to address these two crucial issues.
arXiv Detail & Related papers (2024-03-14T14:19:48Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
We show that training amortized models with noisy labels is inexpensive and surprisingly effective.
This approach significantly accelerates several feature attribution and data valuation methods, often yielding an order of magnitude speedup over existing approaches.
arXiv Detail & Related papers (2024-01-29T03:42:37Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Information Maximizing Curriculum: A Curriculum-Based Approach for
Imitating Diverse Skills [14.685043874797742]
We propose a curriculum-based approach that assigns a weight to each data point and encourages the model to specialize in the data it can represent.
To cover all modes and thus, enable diverse behavior, we extend our approach to a mixture of experts (MoE) policy, where each mixture component selects its own subset of the training data for learning.
A novel, maximum entropy-based objective is proposed to achieve full coverage of the dataset, thereby enabling the policy to encompass all modes within the data distribution.
arXiv Detail & Related papers (2023-03-27T16:02:50Z) - Greedy Modality Selection via Approximate Submodular Maximization [19.22947539760366]
Multimodal learning considers learning from multi-modality data, aiming to fuse heterogeneous sources of information.
It is not always feasible to leverage all available modalities due to memory constraints.
We study modality selection, intending to efficiently select the most informative and complementary modalities under certain computational constraints.
arXiv Detail & Related papers (2022-10-22T22:07:27Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.