論文の概要: Adaptive Group Lasso Neural Network Models for Functions of Few
Variables and Time-Dependent Data
- arxiv url: http://arxiv.org/abs/2108.10825v1
- Date: Tue, 24 Aug 2021 16:16:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-25 14:05:14.776807
- Title: Adaptive Group Lasso Neural Network Models for Functions of Few
Variables and Time-Dependent Data
- Title(参考訳): 適応群lassoニューラルネットワークモデル : 少数の変数と時間依存データの関数について
- Authors: Lam Si Tung Ho and Giang Tran
- Abstract要約: 対象関数をディープニューラルネットワークで近似し、適切な隠れ層の重みに適応したグループLassoを強制する。
実験により,提案手法はスパース辞書行列法を含む最近の最先端手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 4.18804572788063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an adaptive group Lasso deep neural network for
high-dimensional function approximation where input data are generated from a
dynamical system and the target function depends on few active variables or few
linear combinations of variables. We approximate the target function by a deep
neural network and enforce an adaptive group Lasso constraint to the weights of
a suitable hidden layer in order to represent the constraint on the target
function. Our empirical studies show that the proposed method outperforms
recent state-of-the-art methods including the sparse dictionary matrix method,
neural networks with or without group Lasso penalty.
- Abstract(参考訳): 本稿では,動的システムから入力データが生成され,対象関数が少数のアクティブ変数や変数の線形結合に依存する高次元関数近似のための適応群lasso深層ニューラルネットワークを提案する。
対象関数をディープニューラルネットワークで近似し,対象関数の制約を表現するために,適切な隠れ層の重みに対して適応群lasso制約を強制する。
実験により,提案手法は,スパース辞書行列法,グループラッソペナルティの有無のニューラルネットワークなど,最近の最先端手法よりも優れていることが示された。
関連論文リスト
- Continual Learning via Sequential Function-Space Variational Inference [65.96686740015902]
連続学習を逐次関数空間変動推論として定式化した目的を提案する。
ニューラルネットワークの予測を直接正規化する目的と比較して、提案した目的はより柔軟な変動分布を可能にする。
タスクシーケンスの範囲で、逐次関数空間変動推論によってトレーニングされたニューラルネットワークは、関連する手法でトレーニングされたネットワークよりも予測精度が良いことを実証した。
論文 参考訳(メタデータ) (2023-12-28T18:44:32Z) - Sparse-Input Neural Network using Group Concave Regularization [10.103025766129006]
ニューラルネットワークでは、同時特徴選択と非線形関数推定が困難である。
低次元と高次元の両方の設定における特徴選択のための群凹正規化を用いたスパースインプットニューラルネットワークの枠組みを提案する。
論文 参考訳(メタデータ) (2023-07-01T13:47:09Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
制約のあるリソースに大規模ディープニューラルネットワークをデプロイするための新しいアプローチを導入する。
この手法は推論時間を短縮し、メモリ需要と消費電力を減らすことを目的とする。
論文 参考訳(メタデータ) (2022-12-25T15:40:05Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Level set learning with pseudo-reversible neural networks for nonlinear
dimension reduction in function approximation [8.28646586439284]
本稿では,関数近似のための学習レベルセット(DRiLLS)を用いた次元削減手法を提案する。
提案手法は,高次元の入力変数を高次元のアクティブ変数に効果的に変換する擬似可逆ニューラルネットワーク(PRNN)モジュールである。
PRNNは、RevNetの使用によりNLL法に存在する非線形変換の可逆性制約を緩和するだけでなく、各サンプルの影響を適応的に重み付けし、学習された能動変数に対する関数の感度を制御する。
論文 参考訳(メタデータ) (2021-12-02T17:25:34Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - Consistent Feature Selection for Analytic Deep Neural Networks [3.42658286826597]
分析深層ネットワークにおける特徴選択の問題について検討する。
我々は、広範囲のネットワークに対して、グループラッソによる適応群ラッソ選択手順が選択整合であることを証明する。
この研究は、Group Lassoがニューラルネットワークによる特徴選択に非効率であることのさらなる証拠を提供する。
論文 参考訳(メタデータ) (2020-10-16T01:59:53Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Linearly Constrained Neural Networks [0.5735035463793007]
ニューラルネットワークを用いた物理システムからベクトル場をモデリングおよび学習するための新しいアプローチを提案する。
これを実現するために、ターゲット関数は、ニューラルネットワークによってモデル化される下位のポテンシャル場の線形変換としてモデル化される。
論文 参考訳(メタデータ) (2020-02-05T01:27:29Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。