論文の概要: Linearly Constrained Neural Networks
- arxiv url: http://arxiv.org/abs/2002.01600v4
- Date: Wed, 28 Apr 2021 01:43:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 21:09:43.741089
- Title: Linearly Constrained Neural Networks
- Title(参考訳): 線形拘束型ニューラルネットワーク
- Authors: Johannes Hendriks, Carl Jidling, Adrian Wills and Thomas Sch\"on
- Abstract要約: ニューラルネットワークを用いた物理システムからベクトル場をモデリングおよび学習するための新しいアプローチを提案する。
これを実現するために、ターゲット関数は、ニューラルネットワークによってモデル化される下位のポテンシャル場の線形変換としてモデル化される。
- 参考スコア(独自算出の注目度): 0.5735035463793007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach to modelling and learning vector fields from
physical systems using neural networks that explicitly satisfy known linear
operator constraints. To achieve this, the target function is modelled as a
linear transformation of an underlying potential field, which is in turn
modelled by a neural network. This transformation is chosen such that any
prediction of the target function is guaranteed to satisfy the constraints. The
approach is demonstrated on both simulated and real data examples.
- Abstract(参考訳): 本稿では,既知の線形作用素制約を明示的に満たしたニューラルネットワークを用いて,物理システムからベクトル場をモデル化し学習する新しい手法を提案する。
これを実現するために、ターゲット関数は、ニューラルネットワークによってモデル化される下位のポテンシャル場の線形変換としてモデル化される。
この変換は、対象関数の任意の予測が制約を満たすことが保証されるように選択される。
この手法はシミュレーションデータと実データの両方で実証されている。
関連論文リスト
- Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
我々は、訓練されたニューラル演算子におけるベイズの不確実性定量化を近似するための新しいフレームワークLUNOを紹介する。
我々の手法はモデル線形化を利用して(ガウス的)重み空間の不確実性をニューラル作用素の予測に推し進める。
これは関数型プログラミングのカリー化の概念の確率的バージョンとして解釈でき、関数値(ガウス的)ランダムプロセスの信念を導出することを示す。
論文 参考訳(メタデータ) (2024-06-07T16:43:54Z) - Mapping back and forth between model predictive control and neural networks [0.0]
2次コストと線形制約を持つ線形系に対するモデル予測制御(MPC)は、暗黙のニューラルネットワークとして正確に表現されていることを示す。
また、MPCの暗黙のニューラルネットワークを明示的なニューラルネットワークに"解き放つ"方法も導入されている。
論文 参考訳(メタデータ) (2024-04-18T09:29:08Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Instance-wise Linearization of Neural Network for Model Interpretation [13.583425552511704]
この課題は、ニューラルネットワークの非線形動作に潜むことができる。
ニューラルネットワークモデルでは、非線形な振る舞いはモデルの非線形なアクティベーションユニットによって引き起こされることが多い。
本稿では,ニューラルネットワーク予測のフォワード計算過程を再構成するインスタンスワイズ線形化手法を提案する。
論文 参考訳(メタデータ) (2023-10-25T02:07:39Z) - The Contextual Lasso: Sparse Linear Models via Deep Neural Networks [5.607237982617641]
本研究では,空間的特徴の関数として空間的パターンと係数が変化するような説明的特徴に疎線形モデルに適合する新しい統計的推定器を開発する。
実データと合成データに関する広範な実験は、学習されたモデルは、非常に透明であり、通常のラッソよりもスペーサーであることを示している。
論文 参考訳(メタデータ) (2023-02-02T05:00:29Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Performance Bounds for Neural Network Estimators: Applications in Fault
Detection [2.388501293246858]
ニューラルネットワークの堅牢性を定量化し,モデルに基づく異常検知器の構築とチューニングを行った。
チューニングでは,通常動作で想定される誤報発生率の上限を具体的に提示する。
論文 参考訳(メタデータ) (2021-03-22T19:23:08Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。