Understanding Longitudinal Dynamics of Recommender Systems with
Agent-Based Modeling and Simulation
- URL: http://arxiv.org/abs/2108.11068v1
- Date: Wed, 25 Aug 2021 06:28:19 GMT
- Title: Understanding Longitudinal Dynamics of Recommender Systems with
Agent-Based Modeling and Simulation
- Authors: Gediminas Adomavicius and Dietmar Jannach and Stephan Leitner and
Jingjing Zhang
- Abstract summary: Agent-Based Modeling and Simulation (ABM) techniques can be used to study such important longitudinal dynamics of recommender systems.
We provide an overview of the ABM principles, outline a simulation framework for recommender systems based on the literature, and discuss various practical research questions that can be addressed with such an ABM-based simulation framework.
- Score: 7.98348797868119
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Today's research in recommender systems is largely based on experimental
designs that are static in a sense that they do not consider potential
longitudinal effects of providing recommendations to users. In reality,
however, various important and interesting phenomena only emerge or become
visible over time, e.g., when a recommender system continuously reinforces the
popularity of already successful artists on a music streaming site or when
recommendations that aim at profit maximization lead to a loss of consumer
trust in the long run. In this paper, we discuss how Agent-Based Modeling and
Simulation (ABM) techniques can be used to study such important longitudinal
dynamics of recommender systems. To that purpose, we provide an overview of the
ABM principles, outline a simulation framework for recommender systems based on
the literature, and discuss various practical research questions that can be
addressed with such an ABM-based simulation framework.
Related papers
- Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation [51.06031200728449]
We propose a novel framework called mccHRL to provide different levels of temporal abstraction on listwise recommendation.
Within the hierarchical framework, the high-level agent studies the evolution of user perception, while the low-level agent produces the item selection policy.
Results observe significant performance improvement by our method, compared with several well-known baselines.
arXiv Detail & Related papers (2024-09-11T17:01:06Z) - EASRec: Elastic Architecture Search for Efficient Long-term Sequential
Recommender Systems [82.76483989905961]
Current Sequential Recommender Systems (SRSs) suffer from computational and resource inefficiencies.
We develop the Elastic Architecture Search for Efficient Long-term Sequential Recommender Systems (EASRec)
EASRec introduces data-aware gates that leverage historical information from input data batch to improve the performance of the recommendation network.
arXiv Detail & Related papers (2024-02-01T07:22:52Z) - DRDT: Dynamic Reflection with Divergent Thinking for LLM-based
Sequential Recommendation [53.62727171363384]
We introduce a novel reasoning principle: Dynamic Reflection with Divergent Thinking.
Our methodology is dynamic reflection, a process that emulates human learning through probing, critiquing, and reflecting.
We evaluate our approach on three datasets using six pre-trained LLMs.
arXiv Detail & Related papers (2023-12-18T16:41:22Z) - Modeling Recommender Ecosystems: Research Challenges at the Intersection
of Mechanism Design, Reinforcement Learning and Generative Models [17.546954143602818]
We argue that modeling the incentives and behaviors of all actors in the system is strictly necessary to maximize the value the system brings to these actors and improve overall ecosystem "health"
We propose a conceptual framework that encompasses these elements, and articulate a number of research challenges that emerge at the intersection of these different disciplines.
arXiv Detail & Related papers (2023-09-08T03:20:58Z) - Model-free Reinforcement Learning with Stochastic Reward Stabilization
for Recommender Systems [20.395091290715502]
One user's feedback on the same item at different times is random.
We design two reward stabilization frameworks that replace the direct feedback with that learned by a supervised model.
arXiv Detail & Related papers (2023-08-25T08:42:45Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
Large Language Models (LLMs) have revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI)
We conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting.
arXiv Detail & Related papers (2023-07-05T06:03:40Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
We are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it.
We demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.
arXiv Detail & Related papers (2023-07-05T05:58:56Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
This survey aims at providing a comprehensive overview of the recent trends in the field of modeling and simulation.
We start with the motivation behind the development of frameworks implementing the simulations -- simulators.
We provide a new consistent classification of existing simulators based on their functionality, approbation, and industrial effectiveness.
arXiv Detail & Related papers (2022-06-22T19:33:21Z) - Reinforcement Learning based Path Exploration for Sequential Explainable
Recommendation [57.67616822888859]
We propose a novel Temporal Meta-path Guided Explainable Recommendation leveraging Reinforcement Learning (TMER-RL)
TMER-RL utilizes reinforcement item-item path modelling between consecutive items with attention mechanisms to sequentially model dynamic user-item evolutions on dynamic knowledge graph for explainable recommendation.
Extensive evaluations of TMER on two real-world datasets show state-of-the-art performance compared against recent strong baselines.
arXiv Detail & Related papers (2021-11-24T04:34:26Z) - Recommendation Fairness: From Static to Dynamic [12.080824433982993]
We discuss how fairness could be baked into reinforcement learning techniques for recommendation.
We argue that in order to make further progress in recommendation fairness, we may want to consider multi-agent (game-theoretic) optimization, multi-objective (Pareto) optimization.
arXiv Detail & Related papers (2021-09-05T21:38:05Z) - T-RECS: A Simulation Tool to Study the Societal Impact of Recommender
Systems [5.592114738742928]
We introduce T-RECS, an open-sourced Python package designed for researchers to simulate recommendation systems.
To demonstrate the flexibility of T-RECS, we perform a replication of two prior simulation-based research on sociotechnical systems.
arXiv Detail & Related papers (2021-07-19T15:16:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.