SQUID-based interferometric accelerometer
- URL: http://arxiv.org/abs/2108.11448v3
- Date: Sun, 16 Oct 2022 06:40:12 GMT
- Title: SQUID-based interferometric accelerometer
- Authors: Ilia Khomchenko, Patrick Navez, Henni Ouerdane
- Abstract summary: We propose a superconducting quantum interference device (SQUID) to detect and measure acceleration.
The operation of such an accelerometer rests on the ability of the Cooper pairs to record their wave function phase change.
We provide numerical evidence for the feasibility of SQUID-based accelerometers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optics and more recently coherent matter waves enabled inertial sensors such
as accelerometers and gyroscopes to reach high levels of resolution and
sensitivity. As these technologies rest on physical phenomena that require
particular setups and working conditions such as, e.g., kilometers of optical
fibers or ultralow temperatures, their application range is limited because of
lack of portability. Here, we propose a path forward considering a
superconducting quantum interference device (SQUID) to detect and measure
acceleration, using electronic interferometry. The operation of such an
accelerometer rests on the ability of the Cooper pairs to record their wave
function phase change as the device is subjected either to a transverse
acceleration or vibrations. We provide numerical evidence for the feasibility
of SQUID-based accelerometers that can be used for transverse acceleration and
oscillatory motion measurement.
Related papers
- True and apparent motion of gravitational-wave detector test masses [0.0]
Modern optomechanical systems employ increasingly sophisticated quantum-mechanical states of light to probe and manipulate mechanical motion.
We provide an accurate accounting of the true test mass motion, incorporating all sources of loss, the effect of feedback control, and the influence of classical force and sensing noises.
We apply this formalism to current and possible future gravitational-wave interferometers, LIGO A+, LIGO Voyager, Cosmic Explorer (CE), and CE Voyager.
arXiv Detail & Related papers (2024-08-26T15:13:25Z) - Frequency-dependent squeezing for gravitational-wave detection through quantum teleportation [4.647804073850528]
Ground-based interferometric gravitational wave detectors are highly precise sensors for weak forces.
Current and future instruments address this limitation by injecting frequency-dependent squeezed vacuum into the detection port.
This study introduces a novel scheme employing the principles of quantum teleportation and entangled states of light.
arXiv Detail & Related papers (2024-01-09T00:26:25Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
Radio-frequency reflectometry can measure changes in impedance even when their duration is extremely short, down to a microsecond or less.
Examples of reflectometry experiments include projective measurements of qubits and Majorana devices for quantum computing.
This book aims to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics.
arXiv Detail & Related papers (2022-02-21T20:14:21Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer [55.41644538483948]
We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
arXiv Detail & Related papers (2021-04-23T13:20:07Z) - Enhancing Inertial Navigation Performance via Fusion of Classical and
Quantum Accelerometers [6.230800551280429]
We propose a maximum likelihood probabilistic data fusion method for quantum accelerometers.
The proposed method enables quantum accelerometers to be applied in practical inertial navigation scenarios.
We demonstrate the enhanced error performance achieved by the proposed fusion method using a simulated 1D inertial navigation scenario.
arXiv Detail & Related papers (2021-03-17T00:38:28Z) - Hyper Ramsey-Bord\'e matter-wave interferometry for robust quantum
sensors [0.0]
A new generation of atomic sensors using ultra-narrow optical clock transitions and composite pulses are pushing quantum engineering control to a very high level of precision.
We propose a new version of Ramsey-Bord'e interferometry introducing arbitrary composite laser pulses with tailored pulse duration, Rabi field, detuning and phase-steps.
We present, for the first time, new developments for robust hyper Ramsey-Bord'e and Mach-Zehnder interferometers.
arXiv Detail & Related papers (2020-12-07T17:47:28Z) - Quantum hybrid optomechanical inertial sensing [0.0]
We discuss the design of quantum hybrid inertial sensor that combines an optomechanical inertial sensor with the retro-reflector of a cold atom interferometer.
This sensor fusion approach provides absolute and high accuracy measurements with cold atom interferometers.
We evaluate which parameters yield an optimal acceleration sensitivity, from which we anticipate a noise floor at nano-g levels from DC to 1 kHz.
arXiv Detail & Related papers (2020-05-18T00:05:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.