Teleportation-based Speed Meter for Precision Measurement
- URL: http://arxiv.org/abs/2504.18111v1
- Date: Fri, 25 Apr 2025 06:29:24 GMT
- Title: Teleportation-based Speed Meter for Precision Measurement
- Authors: Yohei Nishino, James W. Gardner, Yanbei Chen, Kentaro Somiya,
- Abstract summary: We propose a quantum teleportation-based speed meter for interferometric displacement sensing.<n>Two equivalent implementations are presented that reduce quantum radiation pressure noise and surpass the standard quantum limit of measuring displacement.<n>This approach offers a new path to back-action evasion enabled by quantum entanglement.
- Score: 11.118338267742097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a quantum teleportation-based speed meter for interferometric displacement sensing. Two equivalent implementations are presented: an online approach that uses real-time displacement operation and an offline approach that relies on post-processing. Both implementations reduce quantum radiation pressure noise and surpass the standard quantum limit of measuring displacement. We discuss potential applications to gravitational-wave detectors, where our scheme enhances low-frequency sensitivity without requiring modifications to the core optics of a conventional Michelson interferometer (e.g., substrate or coating properties). This approach offers a new path to back-action evasion enabled by quantum entanglement.
Related papers
- Quantum-amplified global-phase spectroscopy on an optical clock transition [5.423659793487148]
We adapt the holonomic quantum-gate concept to develop a novel Rabi-type "global-phase spectroscopy" (GPS)<n>We are able to demonstrate quantum-amplified time-reversal spectroscopy in an OLC that achieves 2.4(5) dB metrological gain without subtracting the laser noise.<n>Our technique is not limited by measurement resolution, scales easily owing to the global nature of entangling interaction, and exhibits high resilience to typical experimental imperfections.
arXiv Detail & Related papers (2025-04-02T17:18:18Z) - Increasing quantum speed meter sensitivity using optical spring [0.0]
We show that the speed meter type broadband sensitivity gain with the additional lows-frequency minimum in the quantum noise originated from the optical spring can coexist.<n>We show that the location of this minimum can be varied without affecting the core optics of the interferometer, allowing to tune the quantum noise shape in real time to follow the chirp'' GW signals.
arXiv Detail & Related papers (2025-03-13T13:08:00Z) - Experimental Observation of Earth's Rotation with Quantum Entanglement [0.0]
We present a table-top experiment using maximally path-entangled quantum states of light in an interferometer with an area of 715 m$2$.
The achieved sensitivity of 5 $mu$rad/s constitutes the highest rotation resolution ever achieved with optical quantum interferometers.
arXiv Detail & Related papers (2023-10-25T18:01:23Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Modeling Quantum Enhanced Sensing on a Quantum Computer [0.0]
Quantum computers allow for direct simulation of the quantum interference and entanglement used in modern interferometry experiments.
We present two quantum circuit models that demonstrate the role of quantum mechanics and entanglement in modern precision sensors.
arXiv Detail & Related papers (2022-09-16T22:29:16Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Direct approach to realising quantum filters for high-precision
measurements [7.454723938034161]
We find a novel approach to realising quantum filters directly from their frequency-domain transfer functions.
It opens a path towards the systematic design of optimal quantum measurement devices.
arXiv Detail & Related papers (2020-02-18T15:32:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.