True and apparent motion of gravitational-wave detector test masses
- URL: http://arxiv.org/abs/2408.14341v1
- Date: Mon, 26 Aug 2024 15:13:25 GMT
- Title: True and apparent motion of gravitational-wave detector test masses
- Authors: Evan D. Hall, Kevin Kuns,
- Abstract summary: Modern optomechanical systems employ increasingly sophisticated quantum-mechanical states of light to probe and manipulate mechanical motion.
We provide an accurate accounting of the true test mass motion, incorporating all sources of loss, the effect of feedback control, and the influence of classical force and sensing noises.
We apply this formalism to current and possible future gravitational-wave interferometers, LIGO A+, LIGO Voyager, Cosmic Explorer (CE), and CE Voyager.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern optomechanical systems employ increasingly sophisticated quantum-mechanical states of light to probe and manipulate mechanical motion. Squeezed states are now used routinely to enhance the sensitivity of gravitational-wave interferometers to small external forces, and they are also used in feedback-based trapping and damping experiments on the same interferometers to enhance the achievable cooling of the the phonon occupation number of the differential test mass mode (arXiv:2102.12665). In this latter context, an accurate accounting of the true test mass motion, incorporating all sources of loss, the effect of feedback control, and the influence of classical force and sensing noises, is paramount. We work within the two-photon formalism to provide such an accounting, which extends a physically motivated decomposition of the quantum-mechanical noise of the light field (arxiv:2105.12052). This decomposition provides insight, rooted in experimentally accessible parameters, into the optimal squeezed state that should be employed to achieve the lowest occupation number. We apply this formalism to current and possible future gravitational-wave interferometers, LIGO A+, LIGO Voyager, Cosmic Explorer (CE), and CE Voyager, finding that occupation numbers below 1 are possible over a frequency range comparable to the bandwidth of the trapped and cooled oscillator. We also discuss several technical issues in cooling experiments with gravitational-wave detectors.
Related papers
- Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories [103.95523007319937]
We study the dynamics of local excitations in a lattice of superconducting qubits.
For confined excitations, the magnetic field induces a tension in the string connecting them.
Our method allows us to experimentally image string dynamics in a (2+1)D LGT.
arXiv Detail & Related papers (2024-09-25T17:59:05Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Experimental Observation of Earth's Rotation with Quantum Entanglement [0.0]
We present a table-top experiment using maximally path-entangled quantum states of light in an interferometer with an area of 715 m$2$.
The achieved sensitivity of 5 $mu$rad/s constitutes the highest rotation resolution ever achieved with optical quantum interferometers.
arXiv Detail & Related papers (2023-10-25T18:01:23Z) - A zigzag optical cavity for sensing and controlling torsional motion [0.0]
We propose a novel concept for sensing and manipulating torsional motion.
The concept inherently alleviates many limitations of previous approaches.
This work paves the way to new horizons for experiments at the interface of quantum mechanics and gravity.
arXiv Detail & Related papers (2023-06-22T11:03:18Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
Radio-frequency reflectometry can measure changes in impedance even when their duration is extremely short, down to a microsecond or less.
Examples of reflectometry experiments include projective measurements of qubits and Majorana devices for quantum computing.
This book aims to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics.
arXiv Detail & Related papers (2022-02-21T20:14:21Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Two-mode Phonon Squeezing in Bose-Einstein Condensates for Gravitational
Wave Detection [0.0]
The aim of this thesis is to find whether the recently described effect of an oscillating external potential on a uniform BEC can be exploited to generate two-mode squeezed phonon states.
The considered mechanism could find applications not only in the gravitational wave detector that originally motivated this work, but more generally in the field of quantum metrology based on ultracold atoms.
arXiv Detail & Related papers (2021-01-12T13:01:10Z) - A room temperature optomechanical squeezer [0.0]
One of the noise sources that currently limits gravitational wave (GW) detectors comes from the quantum nature of the light causing uncertain amplitude and phase.
GW detectors plan to use squeezed light injection to lower this quantum noise.
I focus on using radiation-pressure-mediated optomechanical (OM) interaction to generate squeezed light.
arXiv Detail & Related papers (2020-06-25T11:56:34Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.