論文の概要: Reducing Label Effort: Self-Supervised meets Active Learning
- arxiv url: http://arxiv.org/abs/2108.11458v1
- Date: Wed, 25 Aug 2021 20:04:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-27 14:04:20.393693
- Title: Reducing Label Effort: Self-Supervised meets Active Learning
- Title(参考訳): ラベルの労力を減らす: セルフ教師付き学習
- Authors: Javad Zolfaghari Bengar, Joost van de Weijer, Bartlomiej Twardowski,
Bogdan Raducanu
- Abstract要約: 自己学習の最近の進歩は、いくつかのデータセットで教師付き学習に匹敵する非常に印象的な成果を上げている。
実験の結果, 自己学習は, ラベル付け作業の削減において, 積極的学習よりも極めて効率的であることが判明した。
自己学習またはスクラッチでトレーニングされたアクティブラーニングのパフォーマンスギャップは、データセットのほぼ半分がラベル付けされた時点に近づくにつれて減少します。
- 参考スコア(独自算出の注目度): 32.4747118398236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning is a paradigm aimed at reducing the annotation effort by
training the model on actively selected informative and/or representative
samples. Another paradigm to reduce the annotation effort is self-training that
learns from a large amount of unlabeled data in an unsupervised way and
fine-tunes on few labeled samples. Recent developments in self-training have
achieved very impressive results rivaling supervised learning on some datasets.
The current work focuses on whether the two paradigms can benefit from each
other. We studied object recognition datasets including CIFAR10, CIFAR100 and
Tiny ImageNet with several labeling budgets for the evaluations. Our
experiments reveal that self-training is remarkably more efficient than active
learning at reducing the labeling effort, that for a low labeling budget,
active learning offers no benefit to self-training, and finally that the
combination of active learning and self-training is fruitful when the labeling
budget is high. The performance gap between active learning trained either with
self-training or from scratch diminishes as we approach to the point where
almost half of the dataset is labeled.
- Abstract(参考訳): アクティブラーニング(active learning)は、積極的に選択された情報的および/または代表的サンプルに基づいてモデルをトレーニングすることで、アノテーションの労力を削減することを目的としたパラダイムである。
アノテーションの労力を減らす別のパラダイムは、大量のラベルのないデータから教師なしの方法で学習する自己学習であり、ラベル付きサンプルはほとんどない。
最近の自己学習の発展は、いくつかのデータセットで教師付き学習に匹敵する非常に印象的な結果をもたらしている。
現在の作業は、この2つのパラダイムが互いにメリットを享受できるかどうかに焦点を当てている。
評価のために,cifar10,cifar100,tiny imagenetなどのオブジェクト認識データセットを調査した。
実験の結果,ラベル付け作業の削減に積極的学習が有効であること,ラベル付け予算の削減に積極的学習が有効であること,ラベル付け予算が高い場合には積極的学習と自己学習の組み合わせが有益であること,などが判明した。
自己学習またはスクラッチでトレーニングされたアクティブラーニングのパフォーマンスギャップは、データセットのほぼ半分がラベル付けされた時点に近づくにつれて減少します。
関連論文リスト
- Incremental Self-training for Semi-supervised Learning [56.57057576885672]
ISTは単純だが有効であり、既存の自己学習に基づく半教師あり学習手法に適合する。
提案したISTを5つのデータセットと2種類のバックボーンで検証し,認識精度と学習速度を効果的に向上させる。
論文 参考訳(メタデータ) (2024-04-14T05:02:00Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
本稿では,ラベルの少ない新しい学習環境である,画像分類のための1ビット監督について述べる。
多段階学習パラダイムを提案し、負ラベル抑圧を半教師付き半教師付き学習アルゴリズムに組み込む。
複数のベンチマークにおいて、提案手法の学習効率は、フルビットの半教師付き監視手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-26T07:39:00Z) - A Matter of Annotation: An Empirical Study on In Situ and Self-Recall Activity Annotations from Wearable Sensors [56.554277096170246]
In-the-wildデータ収集に焦点をあてたユーザスタディにおいて,一般的な4つのアノテーション手法の評価と対比を行う実験的検討を行った。
実際の記録プロセス中に参加者がアノテートするユーザ主導のin situアノテーションと、各日の終わりに参加者が振り返ってアノテートするリコールメソッドの両方に対して、参加者は自身のアクティビティクラスと対応するラベルを選択できる柔軟性を持っていた。
論文 参考訳(メタデータ) (2023-05-15T16:02:56Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
我々は,データプライバシを同時に保持し,モデルの安定性を向上させるために,Pear Study Learning (PSL) と呼ばれる責任あるアクティブラーニング手法を提案する。
まず,クラウドサイドのタスク学習者(教師)から未学習データを分離する。
トレーニング中、タスク学習者は軽量なアクティブ学習者に指示し、アクティブサンプリング基準に対するフィードバックを提供する。
論文 参考訳(メタデータ) (2022-11-24T13:18:27Z) - Active Self-Training for Weakly Supervised 3D Scene Semantic
Segmentation [17.27850877649498]
本稿では,自己学習と能動的学習を組み合わせた3次元シーンの弱教師付きセグメンテーション手法を提案する。
提案手法は,従来の作業やベースラインよりもシーンセグメンテーションを改善する効果的な手法であることを示す。
論文 参考訳(メタデータ) (2022-09-15T06:00:25Z) - Active Self-Semi-Supervised Learning for Few Labeled Samples Fast
Training [3.4806267677524896]
半教師付き学習は、ほとんどアノテーションなしでのトレーニングで大きな成功を収めた。
ランダムサンプリングによって生成された低品質なラベル付きサンプルは、アノテーションの数を減らし続けるのが困難である。
擬似ラベルが優れた半教師付きモデルをブートストラップする,アクティブな自己半教師付きトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-09T07:45:05Z) - Investigating a Baseline Of Self Supervised Learning Towards Reducing
Labeling Costs For Image Classification [0.0]
この研究は、Kaggle.comの cat-vs-dogs データセット Mnist と Fashion-Mnist を実装し、自己教師型学習タスクを調査している。
その結果、自己教師型学習におけるプレテキスト処理は、下流分類タスクの約15%の精度を向上させることがわかった。
論文 参考訳(メタデータ) (2021-08-17T06:43:05Z) - Mind Your Outliers! Investigating the Negative Impact of Outliers on
Active Learning for Visual Question Answering [71.15403434929915]
視覚的質問応答のタスクにおいて、5つのモデルと4つのデータセットにまたがって、多種多様な能動的学習アプローチがランダム選択を上回りません。
アクティブな学習手法が好まれるが、モデルは学習に失敗する例の集まりである。
本研究では,アクティブ学習プールにおける集団外乱の減少に伴い,アクティブ学習サンプル効率が著しく向上することを示す。
論文 参考訳(メタデータ) (2021-07-06T00:52:11Z) - On the Marginal Benefit of Active Learning: Does Self-Supervision Eat
Its Cake? [31.563514432259897]
本稿では,自己指導型事前学習,能動的学習,一貫性型自己学習を統合した新しい枠組みを提案する。
i) 自己指導型事前学習は、特に少数レーベル体制において、セミ教師付き学習を大幅に改善する。
我々は、最先端のS4L技術と組み合わせることで、最先端のアクティブな学習アルゴリズムのさらなるメリットを観察できない。
論文 参考訳(メタデータ) (2020-11-16T17:34:55Z) - Semi-supervised Batch Active Learning via Bilevel Optimization [89.37476066973336]
両レベル最適化によるデータ要約問題として,本手法を定式化する。
本手法は,ラベル付きサンプルがほとんど存在しない場合,レジーム内のキーワード検出タスクにおいて極めて有効であることを示す。
論文 参考訳(メタデータ) (2020-10-19T16:53:24Z) - Learning to Rank for Active Learning: A Listwise Approach [36.72443179449176]
アクティブラーニングは、大量のデータを空腹のアプリケーションにラベル付けする作業を緩和する代替手段として登場した。
本研究では,単純なリストワイズ手法を用いて,損失予測モジュールの構造を再考する。
4つのデータセットに対する実験結果から,本手法は画像分類と回帰処理の両方において,最近の最先端の能動的学習手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-07-31T21:05:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。