論文の概要: Fast Accurate Defect Detection in Wafer Fabrication
- arxiv url: http://arxiv.org/abs/2108.11757v1
- Date: Mon, 23 Aug 2021 13:00:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-28 03:22:20.509748
- Title: Fast Accurate Defect Detection in Wafer Fabrication
- Title(参考訳): ウェハ製造における高精度欠陥検出
- Authors: Thomas Olschewski
- Abstract要約: 提案アルゴリズムは,チップ製造から得られた実世界のデータによく適用されている。
最適化のために多くの重みを持つ典型的なニューラルネットワークとは異なり、提案アルゴリズムはごく少数の変数に対してのみ最適化を試みる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A generic fast method for object classification is proposed. In addition, a
method for dimensional reduction is presented. The presented algorithms have
been applied to real-world data from chip fabrication successfully to the task
of predicting defect states of tens of thousands of chips of several products
based on measurements or even just part of measurements. Unlike typical neural
networks with a large number of weights to optimize over, the presented
algorithm tries optimizing only over a very small number of variables in order
to increase chances to find a global optimum. Our approach is interesting in
that it is fast, led to good to very good performance with real-world wafer
data, allows for short implementations and computes values which have a clear
meaning easy to explain.
- Abstract(参考訳): オブジェクト分類のためのジェネリック高速手法を提案する。
さらに,次元還元法を提案する。
提案手法は,数製品数万チップの欠陥状態を,測定値や測定値の一部だけに基づいて予測する作業において,チップ製造から得られる実世界データに適用されている。
最適化のために多くの重みを持つ典型的なニューラルネットワークとは異なり、提案アルゴリズムは、グローバルな最適化を見つける機会を増やすために、非常に少数の変数だけを最適化しようとする。
私たちのアプローチは、高速で、現実世界のウエハデータで非常に優れたパフォーマンスを実現し、短い実装を可能にし、説明しやすい明確な意味を持つ値を計算できるという点で興味深いです。
関連論文リスト
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
本稿では,反復的BONDと自己プレイアライメントの統一的なゲーム理論接続を明らかにする。
WINレート支配(WIN rate Dominance, WIND)という新しいフレームワークを構築し, 正規化利率支配最適化のためのアルゴリズムを多数提案する。
論文 参考訳(メタデータ) (2024-10-28T04:47:39Z) - Efficient Numerical Algorithm for Large-Scale Damped Natural Gradient
Descent [7.368877979221163]
本研究では,パラメータ数が利用可能なサンプル数を大幅に上回る大規模シナリオにおいて,減衰したフィッシャー行列を効率的に解くアルゴリズムを提案する。
アルゴリズムはColesky分解に基づいており、一般に適用可能である。ベンチマークの結果、既存の手法よりもかなり高速であることが示されている。
論文 参考訳(メタデータ) (2023-10-26T16:46:13Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Sequential minimum optimization algorithm with small sample size
estimators [0.06445605125467573]
逐次最小最適化は、機械学習のグローバル検索訓練アルゴリズムである。
本手法をフォトニクス回路に適用することにより,偶然事象の頻度の低さがアルゴリズムの速度を低下させるという新たな課題が生じる。
論文 参考訳(メタデータ) (2023-03-02T06:02:46Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
本稿では,分散動的安全スクリーニング(DDSS)手法を提案し,共有メモリアーキテクチャと分散メモリアーキテクチャにそれぞれ適用する。
提案手法は, 線形収束率を低次複雑度で達成し, 有限個の繰り返しにおいてほとんどすべての不活性な特徴をほぼ確実に除去できることを示す。
論文 参考訳(メタデータ) (2022-04-23T02:45:55Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
ROC曲線 (AUC) の下の領域は、機械学習において最も広く使われている分類モデルのパフォーマンス指標の1つである。
近年の封筒平滑化技術に基づく効率的な近似勾配降下法を開発した。
提案アルゴリズムは,効率のよい解法を欠くランク付けされた範囲損失の和を最小化するためにも利用できる。
論文 参考訳(メタデータ) (2022-03-03T03:46:18Z) - Defect Detection on Semiconductor Wafers by Distribution Analysis [0.0]
提案アルゴリズムは, 製品種別10万チップ近いウエハ加工から実世界の計測データに適用された。
我々のアプローチは、高速(準線形)であり、実世界のウエハデータに対する優れた予測や検出品質に到達したという点で興味深い。
論文 参考訳(メタデータ) (2021-11-05T21:00:22Z) - Convolutional Sparse Coding Fast Approximation with Application to
Seismic Reflectivity Estimation [9.005280130480308]
2~5回の反復で畳み込みスパース符号の良好な近似を生成する古典的反復しきい値アルゴリズムの高速化版を提案する。
提案手法の性能は, 合成シナリオと実データシナリオの両方において, 地震インバージョン問題によって実証される。
論文 参考訳(メタデータ) (2021-06-29T12:19:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Accelerating Neural Network Inference by Overflow Aware Quantization [16.673051600608535]
ディープニューラルネットワークの重計算を継承することで、その広範な応用が防げる。
トレーニング可能な適応的不動点表現を設計し,オーバーフローを考慮した量子化手法を提案する。
提案手法により,量子化損失を最小限に抑え,最適化された推論性能を得ることができる。
論文 参考訳(メタデータ) (2020-05-27T11:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。