論文の概要: A Survey on Automated Fact-Checking
- arxiv url: http://arxiv.org/abs/2108.11896v1
- Date: Thu, 26 Aug 2021 16:34:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-27 14:06:17.525057
- Title: A Survey on Automated Fact-Checking
- Title(参考訳): 自動Fact-Checkingに関する調査
- Authors: Zhijiang Guo, Michael Schlichtkrull, Andreas Vlachos
- Abstract要約: 本稿では,自然言語処理によるファクトチェックの自動化について検討し,関連する課題や規律との関係について考察する。
既存のデータセットとモデルを概観し、与えられた様々な定義を統一し、共通の概念を識別することを目的としている。
- 参考スコア(独自算出の注目度): 18.255327608480165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fact-checking has become increasingly important due to the speed with which
both information and misinformation can spread in the modern media ecosystem.
Therefore, researchers have been exploring how fact-checking can be automated,
using techniques based on natural language processing, machine learning,
knowledge representation, and databases to automatically predict the veracity
of claims. In this paper, we survey automated fact-checking stemming from
natural language processing, and discuss its connections to related tasks and
disciplines. In this process, we present an overview of existing datasets and
models, aiming to unify the various definitions given and identify common
concepts. Finally, we highlight challenges for future research.
- Abstract(参考訳): ファクトチェックは、情報と誤った情報の両方が現代のメディアエコシステムに広まるスピードによってますます重要になっている。
そのため、研究者は、自然言語処理、機械学習、知識表現、データベースに基づく技術を用いて、ファクトチェックを自動化し、クレームの検証性を自動的に予測する方法を模索している。
本稿では,自然言語処理によるファクトチェックの自動化に関する調査を行い,関連するタスクや分野との関係について述べる。
本稿では,既存のデータセットとモデルを概観し,共通概念の定義と識別を統一することを目的とする。
最後に,今後の研究課題を強調する。
関連論文リスト
- Automated Justification Production for Claim Veracity in Fact Checking: A Survey on Architectures and Approaches [2.0140898354987353]
AFC(Automated Fact-Checking)は、クレーム精度の自動検証である。
AFCは、特に大量のコンテンツが毎日オンラインで生成されることを考えると、誤報から真実を識別するために不可欠である。
現在の研究は、メタデータ分析と言語精査を通してクレームの正確性を予測することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-09T01:54:13Z) - Synthetic Disinformation Attacks on Automated Fact Verification Systems [53.011635547834025]
本研究では,2つのシミュレーション環境において,自動ファクトチェッカーの合成正反対証拠に対する感度について検討する。
これらのシステムでは,これらの攻撃に対して大幅な性能低下がみられた。
偽情報の発生源としての現代のNLGシステムの脅威の増大について論じる。
論文 参考訳(メタデータ) (2022-02-18T19:01:01Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - FacTeR-Check: Semi-automated fact-checking through Semantic Similarity
and Natural Language Inference [61.068947982746224]
FacTeR-Checkは、ファクトチェックされた情報の検索、未確認のクレームの検証、ソーシャルメディア上での危険な情報の追跡を可能にする。
このアーキテクチャは、NLI19-SPと呼ばれる新しいデータセットを使って検証されている。
この結果から,各ベンチマークにおける最先端性能と,61種類のホアックスの時間経過に伴う進化の有用な解析結果が得られた。
論文 参考訳(メタデータ) (2021-10-27T15:44:54Z) - Automated Fact-Checking: A Survey [5.729426778193398]
自然言語処理(NLP)の分野の研究者は、ファクトチェックデータセットを構築することで、このタスクに貢献している。
本稿では,クレーム検出とクレーム検証の両方を対象とする自動ファクトチェックについて検討する。
論文 参考訳(メタデータ) (2021-09-23T15:13:48Z) - Towards Explainable Fact Checking [22.91475787277623]
この論文は、自動事実チェックに関する私の研究を提示します。
これには、クレームチェックの信頼性検出、スタンス検出、正確性予測が含まれる。
その貢献は事実チェックに留まらず、より一般的な機械学習ソリューションを提案している。
論文 参考訳(メタデータ) (2021-08-23T16:22:50Z) - FaVIQ: FAct Verification from Information-seeking Questions [77.7067957445298]
実ユーザによる情報探索質問を用いて,ファVIQと呼ばれる大規模事実検証データセットを構築した。
我々の主張は自然であると証明され、語彙バイアスがほとんどなく、検証の証拠を完全に理解する必要がある。
論文 参考訳(メタデータ) (2021-07-05T17:31:44Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z) - Generating Fact Checking Explanations [52.879658637466605]
まだ欠けているパズルの重要なピースは、プロセスの最も精巧な部分を自動化する方法を理解することです。
本稿では、これらの説明を利用可能なクレームコンテキストに基づいて自動生成する方法について、最初の研究を行う。
この結果から,個別に学習するのではなく,両目標を同時に最適化することで,事実確認システムの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2020-04-13T05:23:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。