Foiling zero-error attacks against coherent-one-way quantum key
distribution
- URL: http://arxiv.org/abs/2108.12393v1
- Date: Fri, 27 Aug 2021 17:01:14 GMT
- Title: Foiling zero-error attacks against coherent-one-way quantum key
distribution
- Authors: Marcos Curty
- Abstract summary: coherent-one-way (COW) QKD is commercially available.
It has been shown very recently that its secret key rate scales quadratically with the channel transmittance.
We study various countermeasures to foil zero-error attacks against COW-QKD.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To protect practical quantum key distribution (QKD) against
photon-number-splitting attacks, one could measure the coherence of the
received signals. One prominent example that follows this approach is
coherent-one-way (COW) QKD, which is commercially available. Surprisingly,
however, it has been shown very recently that its secret key rate scales
quadratically with the channel transmittance, and, thus, this scheme is
unsuitable for long-distance transmission. This result was derived by using a
zero-error attack, which prevents the distribution of a secure key without
introducing any error. Here, we study various countermeasures to foil
zero-error attacks against COW-QKD. They require to either monitor some
additional available detection statistics, or to increase the number of quantum
states emitted. We obtain asymptotic upper security bounds on the secret key
rate that scale close to linear with the channel transmittance, thus suggesting
the effectiveness of the countermeasures to boost the performance of this
protocol.
Related papers
- Hacking coherent-one-way quantum key distribution with present-day technology [0.0]
Recent results have shown that the secret-key rate of coherent-one-way (COW) quantum key distribution (QKD) scales quadratically with the system's transmittance.
This was proven by using a so-called zero-error attack, which relies on an unambiguous state discrimination (USD) measurement.
Here, we investigate the feasibility and effectiveness of zero-error attacks against COW QKD with present-day technology.
arXiv Detail & Related papers (2024-06-19T18:16:29Z) - Empirical Risk-aware Machine Learning on Trojan-Horse Detection for Trusted Quantum Key Distribution Networks [31.857236131842843]
Quantum key distribution (QKD) is a cryptographic technique that offers high levels of data security during transmission.
The existence of a gap between theoretical concepts and practical implementation has raised concerns about the trustworthiness of QKD networks.
We propose the implementation of risk-aware machine learning techniques that present risk analysis for Trojan-horse attacks over the time-variant quantum channel.
arXiv Detail & Related papers (2024-01-26T03:36:13Z) - Phase-Matching Quantum Key Distribution without Intensity Modulation [25.004151934190965]
We propose a phase-matching quantum key distribution protocol without intensity modulation.
Simulation results show that the transmission distance of our protocol could reach 305 km in telecommunication fiber.
Our protocol provides a promising solution for constructing quantum networks.
arXiv Detail & Related papers (2023-03-21T04:32:01Z) - Satellite-Based Quantum Key Distribution in the Presence of Bypass
Channels [44.81834231082477]
Security of quantum key distribution under restricted eavesdropping scenarios is addressed.
We find regimes of operation in which the above restrictions on Eve can considerably improve system performance.
Our work opens up new security frameworks for spaceborne quantum communications systems.
arXiv Detail & Related papers (2022-12-09T12:24:40Z) - Upper bounds on key rates in device-independent quantum key distribution
based on convex-combination attacks [1.118478900782898]
We present the convex-combination attack as an efficient, easy-to-use technique for upper-bounding DIQKD key rates.
It allows verifying the accuracy of lower bounds on key rates for state-of-the-art protocols.
arXiv Detail & Related papers (2022-06-13T15:27:48Z) - Device-Independent-Quantum-Randomness-Enhanced Zero-Knowledge Proof [25.758352536166502]
Zero-knowledge proof (ZKP) is a fundamental cryptographic primitive that allows a prover to convince a verifier of the validity of a statement.
As an efficient variant of ZKP, non-interactive zero-knowledge proof (NIZKP) adopting the Fiat-Shamir is essential to a wide spectrum of applications.
arXiv Detail & Related papers (2021-11-12T13:36:43Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Zero-error attack against coherent-one-way quantum key distribution [0.0]
We present a zero-error attack against COW-QKD that is essentially optimal.
This translates into an upper bound on its secret key rate that is more than an order of magnitude lower than previously known upper bounds.
arXiv Detail & Related papers (2021-01-18T17:51:19Z) - Noiseless attack and counterfactual security of quantum key distribution [0.0]
We show that the efficiency of counterfactual QKD protocols can be enhanced by including non-counterfactual bits.
We show how this problem can be resolved in a simple way, whereby the non-counterfactual key bits are indicated to be secure.
This method of enhancing the key rate is shown to be applicable to various existing quantum counterfactual key distribution protocols.
arXiv Detail & Related papers (2020-12-09T16:48:43Z) - Upper security bounds for coherent-one-way quantum key distribution [0.0]
Coherent-one-way (COW) QKD has been introduced as a promising solution to overcome this limitation.
Thanks to its experimental simplicity, the COW protocol is already used in commercial applications.
We derive simple upper security bounds on its secret key rate, which demonstrate that it scales at most quadratically with the system's transmittance.
arXiv Detail & Related papers (2020-06-30T15:20:08Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.