Device-Independent-Quantum-Randomness-Enhanced Zero-Knowledge Proof
- URL: http://arxiv.org/abs/2111.06717v1
- Date: Fri, 12 Nov 2021 13:36:43 GMT
- Title: Device-Independent-Quantum-Randomness-Enhanced Zero-Knowledge Proof
- Authors: Cheng-Long Li, Kai-Yi Zhang, Xingjian Zhang, Kui-Xing Yang, Yu Han,
Su-Yi Cheng, Hongrui Cui, Wen-Zhao Liu, Ming-Han Li, Yang Liu, Bing Bai,
Hai-Hao Dong, Jun Zhang, Xiongfeng Ma, Yu Yu, Jingyun Fan, Qiang Zhang and
Jian-Wei Pan
- Abstract summary: Zero-knowledge proof (ZKP) is a fundamental cryptographic primitive that allows a prover to convince a verifier of the validity of a statement.
As an efficient variant of ZKP, non-interactive zero-knowledge proof (NIZKP) adopting the Fiat-Shamir is essential to a wide spectrum of applications.
- Score: 25.758352536166502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-knowledge proof (ZKP) is a fundamental cryptographic primitive that
allows a prover to convince a verifier of the validity of a statement without
leaking any further information. As an efficient variant of ZKP,
non-interactive zero-knowledge proof (NIZKP) adopting the Fiat-Shamir heuristic
is essential to a wide spectrum of applications, such as federated learning,
blockchain and social networks. However, the heuristic is typically built upon
the random oracle model making ideal assumptions about hash functions, which
does not hold in reality and thus undermines the security of the protocol.
Here, we present a quantum resolution to the problem. Instead of resorting to a
random oracle model, we implement a quantum randomness service. This service
generates random numbers certified by the loophole-free Bell test and delivers
them with postquantum cryptography (PQC) authentication. Employing this
service, we conceive and implement a NIZKP of the three-colouring problem. By
bridging together three prominent research themes, quantum non-locality, PQC
and ZKP, we anticipate this work to open a new paradigm of quantum information
science.
Related papers
- Entropy Accumulation under Post-Quantum Cryptographic Assumptions [4.416484585765028]
In device-independent (DI) quantum protocols, the security statements are oblivious to the characterization of the quantum apparatus.
We present a flexible framework for proving the security of such protocols by utilizing a combination of tools from quantum information theory.
arXiv Detail & Related papers (2023-07-02T12:52:54Z) - Encryption with Quantum Public Keys [1.7725414095035827]
We study the question of building quantum public-key encryption schemes from one-way functions and even weaker assumptions.
We propose three schemes for quantum public-key encryption from one-way functions, pseudorandom function-like states with proof of deletion and pseudorandom function-like states, respectively.
arXiv Detail & Related papers (2023-03-09T16:17:19Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - On Zero-Knowledge Proofs over the Quantum Internet [0.0]
This paper presents a new method for quantum identity authentication (QIA) protocols.
The logic of classical zero-knowledge proofs (ZKPs) due to Schnorr is applied in quantum circuits and algorithms.
arXiv Detail & Related papers (2022-12-06T14:57:00Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Indistinguishability Obfuscation of Null Quantum Circuits and
Applications [17.72516323214125]
We study the notion of indistinguishability obfuscation for null quantum circuits (quantum null-iO)
We show how quantum null-iO enables a series of new cryptographic primitives that, prior to our work, were unknown to exist even making assumptions.
arXiv Detail & Related papers (2021-06-11T00:08:14Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - A Black-Box Approach to Post-Quantum Zero-Knowledge in Constant Rounds [12.525959293825318]
We construct a constant round interactive proof for NP that satisfies statistical soundness and black-box $epsilon$-zero-knowledge against quantum attacks.
At the heart of our results is a new quantum rewinding technique that enables a simulator to extract a committed message of a malicious verifier.
arXiv Detail & Related papers (2020-11-05T05:40:05Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z) - Quantum-secure message authentication via blind-unforgeability [74.7729810207187]
We propose a natural definition of unforgeability against quantum adversaries called blind unforgeability.
This notion defines a function to be predictable if there exists an adversary who can use "partially blinded" access to predict values.
We show the suitability of blind unforgeability for supporting canonical constructions and reductions.
arXiv Detail & Related papers (2018-03-10T05:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.