Active Readout Error Mitigation
- URL: http://arxiv.org/abs/2108.12432v3
- Date: Wed, 7 Sep 2022 19:47:49 GMT
- Title: Active Readout Error Mitigation
- Authors: Rebecca Hicks, Bryce Kobrin, Christian W. Bauer, Benjamin Nachman
- Abstract summary: We propose a scheme to actively reduce readout errors on a shot-by-shot basis by encoding single qubits, immediately prior to readout, into multi-qubit states.
We analyze the potential of our approach using two types of error-correcting codes and, as a proof of principle, demonstrate an 80% improvement in readout error on the IBMQ Mumbai quantum computer.
- Score: 1.5675763601034223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mitigating errors is a significant challenge for near term quantum computers.
One of the most important sources of errors is related to the readout of the
quantum state into a classical bit stream. A variety of techniques have been
proposed to mitigate these errors with post-hoc corrections. We propose a
complementary scheme to actively reduce readout errors on a shot-by-shot basis
by encoding single qubits, immediately prior to readout, into multi-qubit
states. The computational resources of our technique are independent of the
circuit depth and fully compatible with current hardware error rates and
connectivity. We analyze the potential of our approach using two types of
error-correcting codes and, as a proof of principle, demonstrate an 80%
improvement in readout error on the IBMQ Mumbai quantum computer.
Related papers
- Analysis of Maximum Threshold and Quantum Security for Fault-Tolerant
Encoding and Decoding Scheme Base on Steane Code [10.853582091917236]
The original Steane code is not fault-tolerant because the CNOT gates in an encoded block may cause error propagation.
We first propose a fault-tolerant encoding and decoding scheme, which analyzes all possible errors caused by each quantum gate in an error-correction period.
We then provide the fault-tolerant scheme of the universal quantum gate set, including fault-tolerant preparation and verification of ancillary states.
arXiv Detail & Related papers (2024-03-07T07:46:03Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Segmented Composite Design of Robust Single-Qubit Quantum Gates [0.9487097819140653]
We introduce an error mitigation scheme for robust single-qubit unitary gates based on composite segmented design.
We show that the 3-segmented composite design for the fundamental single-qubits unitary operations reduces the error by an order of magnitude for a realistic distribution of errors.
arXiv Detail & Related papers (2022-12-31T17:00:24Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Graph-Theoretic Approach to Quantum Error Correction [0.0]
We investigate a novel class of quantum error correcting codes to correct errors on both qubits and higher-state quantum systems represented as qudits.
These codes arise from an original graph-theoretic representation of sets of quantum errors.
We present two instances of optimal encodings: an optimal encoding for fully correlated noise which achieves a higher encoding rate than previously known, and a minimal encoding for single qudits.
arXiv Detail & Related papers (2021-10-16T00:04:24Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Qubit Readout Error Mitigation with Bit-flip Averaging [0.0]
We present a scheme to more efficiently mitigate qubit readout errors on quantum hardware.
Our scheme removes biases in the readout errors allowing a general error model to be built with far fewer calibration measurements.
Our approach can be combined with, and simplify, other mitigation methods allowing tractable mitigation even for large numbers of qubits.
arXiv Detail & Related papers (2021-06-10T15:08:06Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.