論文の概要: Mal2GCN: A Robust Malware Detection Approach Using Deep Graph
Convolutional Networks With Non-Negative Weights
- arxiv url: http://arxiv.org/abs/2108.12473v1
- Date: Fri, 27 Aug 2021 19:42:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-31 14:23:34.237175
- Title: Mal2GCN: A Robust Malware Detection Approach Using Deep Graph
Convolutional Networks With Non-Negative Weights
- Title(参考訳): Mal2GCN:非負重み付きディープグラフ畳み込みネットワークを用いたロバストなマルウェア検出手法
- Authors: Omid Kargarnovin, Amir Mahdi Sadeghzadeh, and Rasool Jalili
- Abstract要約: 実世界の敵に対するマルウェア検出モデルの堅牢性を評価するために,ブラックボックスのソースコードをベースとしたマルウェア生成手法を提案する。
そこで我々は,堅牢なマルウェア検出モデルであるMal2GCNを提案する。Mal2GCNは,グラフ畳み込みネットワークの表現力と非負重み学習法を組み合わせて,高い検出精度でマルウェア検出モデルを作成する。
- 参考スコア(独自算出の注目度): 1.3190581566723918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing pace of using machine learning to solve various problems,
securing these models against adversaries has become one of the main concerns
of researchers. Recent studies have shown that in an adversarial environment,
machine learning models are vulnerable to adversarial examples, and adversaries
can create carefully crafted inputs to fool the models. With the advent of deep
neural networks, many researchers have used deep neural networks for various
tasks, and have achieved impressive results. These models must become robust
against attacks before being deployed safely, especially in security-related
fields such as malware detection. In this paper, we first present a black-box
source code-based adversarial malware generation approach that can be used to
evaluate the robustness of malware detection models against real-world
adversaries. The proposed approach injects adversarial codes into the various
locations of malware source codes to evade malware detection models. We then
propose Mal2GCN, a robust malware detection model. Mal2GCN uses the
representation power of graph convolutional networks combined with the
non-negative weights training method to create a malware detection model with
high detection accuracy, which is also robust against adversarial attacks that
add benign features to the input.
- Abstract(参考訳): さまざまな問題を解決するために機械学習を使うというペースが高まる中、これらのモデルを敵から守ることが研究者の主な関心事となっている。
最近の研究では、敵の環境では、機械学習モデルは敵の例に弱いことが示されており、敵はモデルを騙すために慎重に入力を作成することができる。
ディープニューラルネットワークの出現により、多くの研究者がディープニューラルネットワークを様々なタスクに使用し、素晴らしい結果を得た。
これらのモデルは、特にマルウェア検出などのセキュリティ関連分野において、安全に配置される前に攻撃に対して堅牢になる必要がある。
本稿では,ブラックボックスのソースコードをベースとしたマルウェア生成手法を提案し,実際の敵に対するマルウェア検出モデルの堅牢性を評価する。
提案手法は,マルウェア検出モデルを回避するために,マルウェアソースコードの様々な場所に敵のコードを注入する。
次に,ロバストなマルウェア検出モデルmal2gcnを提案する。
Mal2GCNは、グラフ畳み込みネットワークの表現力と非負の重み付け訓練法を組み合わせて、高い検出精度のマルウェア検出モデルを作成する。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Creating Valid Adversarial Examples of Malware [4.817429789586127]
本稿では、強化学習アルゴリズムを用いて、敵のマルウェアの例を生成する。
PPOアルゴリズムを用いて,勾配型決定木(GBDT)モデルに対して53.84%の回避率を達成した。
機能保存型可搬性改造のランダムな適用は、主要なアンチウイルスエンジンを回避できる。
論文 参考訳(メタデータ) (2023-06-23T16:17:45Z) - FGAM:Fast Adversarial Malware Generation Method Based on Gradient Sign [16.16005518623829]
敵対的攻撃は、敵対的サンプルを生成することによって、ディープラーニングモデルを欺くことである。
本稿では,FGAM(Fast Generate Adversarial Malware)を提案する。
FGAMが生成したマルウェア偽装モデルの成功率は,既存手法と比較して約84%増加することが実験的に検証された。
論文 参考訳(メタデータ) (2023-05-22T06:58:34Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
本稿では,ロバスト検出器 (RobustDet) を提案する。
本モデルは, クリーン画像の検出能力を維持しながら, 傾きを効果的に解き, 検出堅牢性を著しく向上させる。
論文 参考訳(メタデータ) (2022-07-13T13:59:59Z) - Task-Aware Meta Learning-based Siamese Neural Network for Classifying
Obfuscated Malware [5.293553970082943]
既存のマルウェア検出方法は、トレーニングデータセットに難読化されたマルウェアサンプルが存在する場合、異なるマルウェアファミリーを正しく分類できない。
そこで我々は,このような制御フロー難読化技術に対して耐性を持つ,タスク対応の複数ショット学習型サイメスニューラルネットワークを提案する。
提案手法は,同一のマルウェアファミリーに属するマルウェアサンプルを正しく分類し,ユニークなマルウェアシグネチャの認識に極めて有効である。
論文 参考訳(メタデータ) (2021-10-26T04:44:13Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Binary Black-box Evasion Attacks Against Deep Learning-based Static
Malware Detectors with Adversarial Byte-Level Language Model [11.701290164823142]
MalRNNは、制限なく回避可能なマルウェアバリアントを自動的に生成する新しいアプローチです。
MalRNNは、3つの最近のディープラーニングベースのマルウェア検出器を効果的に回避し、現在のベンチマークメソッドを上回ります。
論文 参考訳(メタデータ) (2020-12-14T22:54:53Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
多くの場合、事前トレーニングされたモデルは、トロイの木馬の振る舞いをモデルに挿入するためにトレーニングパイプラインを中断したかもしれないベンダーから派生している。
本稿では,事前学習したモデルがトロイの木馬か良馬かを検証する手法を提案する。
本手法は,ニューラルネットワークの指紋を,ネットワーク勾配から学習した逆方向の摂動の形でキャプチャする。
論文 参考訳(メタデータ) (2020-07-28T19:00:40Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z) - MDEA: Malware Detection with Evolutionary Adversarial Learning [16.8615211682877]
MDEA(Adversarial Malware Detection)モデルであるMDEAは、進化的最適化を使用して攻撃サンプルを作成し、ネットワークを回避攻撃に対して堅牢にする。
進化したマルウェアサンプルでモデルを再トレーニングすることで、その性能は大幅に改善される。
論文 参考訳(メタデータ) (2020-02-09T09:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。