論文の概要: Few-Shot Table-to-Text Generation with Prototype Memory
- arxiv url: http://arxiv.org/abs/2108.12516v2
- Date: Tue, 31 Aug 2021 11:02:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-01 11:30:04.329828
- Title: Few-Shot Table-to-Text Generation with Prototype Memory
- Title(参考訳): プロトタイプメモリによるテーブル・ツー・テキスト生成
- Authors: Yixuan Su, Zaiqiao Meng, Simon Baker, Nigel Collier
- Abstract要約: 本稿では,プロトタイプ・ツー・ジェネレーション (P2G) という,プロトタイプ・トゥ・ジェネレーション(Prototype-to-Generate, P2G) を用いたテーブル・トゥ・テキスト生成手法を提案する。
提案フレームワークは、IRシステムと新しいプロトタイプセレクタによって共同で選択された、検索されたプロトタイプを利用する。
3つの最先端モデルを用いた3つのベンチマークデータセットの実験結果から,提案手法がモデル性能を著しく向上することが示された。
- 参考スコア(独自算出の注目度): 14.69889589370148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural table-to-text generation models have achieved remarkable progress on
an array of tasks. However, due to the data-hungry nature of neural models,
their performances strongly rely on large-scale training examples, limiting
their applicability in real-world applications. To address this, we propose a
new framework: Prototype-to-Generate (P2G), for table-to-text generation under
the few-shot scenario. The proposed framework utilizes the retrieved
prototypes, which are jointly selected by an IR system and a novel prototype
selector to help the model bridging the structural gap between tables and
texts. Experimental results on three benchmark datasets with three
state-of-the-art models demonstrate that the proposed framework significantly
improves the model performance across various evaluation metrics.
- Abstract(参考訳): ニューラルテーブル-テキスト生成モデルは、タスクの配列において顕著な進歩を遂げた。
しかし、ニューラルモデルのデータ不足の性質のため、彼らのパフォーマンスは大規模トレーニングの例に強く依存しており、実際のアプリケーションへの適用性を制限する。
そこで我々はP2G(Prototype-to-Generate)という新しいフレームワークを提案する。
提案フレームワークは、IRシステムと新しいプロトタイプセレクタによって共同で選択された検索されたプロトタイプを利用して、テーブルとテキスト間の構造的ギャップを埋めるモデルを支援する。
3つの最先端モデルを用いた3つのベンチマークデータセットの実験結果から,提案手法は各種評価指標のモデル性能を著しく改善することが示された。
関連論文リスト
- Revisiting N-Gram Models: Their Impact in Modern Neural Networks for Handwritten Text Recognition [4.059708117119894]
本研究は,言語モデル,特にn-gramモデルが,手書き認識の分野における最先端のディープラーニングアーキテクチャの性能に引き続き寄与するかどうかを論じる。
我々は、明示的なn-gram言語モデルを統合することなく、2つの著名なニューラルネットワークアーキテクチャ、PyLaiaとDANを評価した。
その結果,文字やサブワードの n-gram モデルの導入は,すべてのデータセット上での ATR モデルの性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2024-04-30T07:37:48Z) - Towards Robustness of Text-to-Visualization Translation against Lexical and Phrasal Variability [27.16741353384065]
テキスト・トゥ・バイ・モデルはしばしば、質問における単語間の語彙マッチングとデータスキーマにおけるトークンに依存している。
本研究では,これまで検討されていない領域である現行のテキスト・ツー・ヴィジュア・モデルのロバスト性について検討する。
本稿では,2つの変種における入力摂動に対処するために特別に設計されたGRED(Retrieval-Augmented Generation, RAG)技術に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-10T16:12:50Z) - Grounding and Enhancing Grid-based Models for Neural Fields [52.608051828300106]
本稿では,グリッドモデルに関する理論的枠組みを紹介する。
このフレームワークは、これらのモデルの近似と一般化の挙動がグリッド接カーネル(GTK)によって決定されることを指摘している。
導入されたフレームワークは、Multiplicative Fourier Adaptive Grid(MulFAGrid)と呼ばれる新しいグリッドベースモデルの開発を動機付けている。
論文 参考訳(メタデータ) (2024-03-29T06:33:13Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
本稿では,2相モデル選択フレームワークを提案する。
これは、ベンチマークデータセット上でモデルのトレーニングパフォーマンスを活用することにより、堅牢なモデルを選択する効率を高めることを目的としている。
提案手法は,従来のベースライン法に比べて約3倍の速度でハイパフォーマンスモデルの選択を容易にすることが実証された。
論文 参考訳(メタデータ) (2024-03-28T14:44:44Z) - Few-Shot Data-to-Text Generation via Unified Representation and
Multi-Source Learning [114.54944761345594]
本稿では,既存の手法の限界に対処する構造化データ・テキスト生成手法を提案する。
提案手法は,マルチタスクトレーニング,ゼロショット,少数ショットシナリオの性能向上を目的としている。
論文 参考訳(メタデータ) (2023-08-10T03:09:12Z) - Controllable Text Generation with Neurally-Decomposed Oracle [91.18959622763055]
我々はNeurAlly-Decomposed Oracle (NADO) を用いた自動回帰生成モデルを制御するフレームワークを提案する。
制御可能な生成のためのベースモデルにトークンレベルのガイダンスを組み込むためのクローズドフォーム最適解を提案する。
論文 参考訳(メタデータ) (2022-05-27T20:17:53Z) - Plan-then-Generate: Controlled Data-to-Text Generation via Planning [11.127156275580305]
ニューラルデータ-テキストモデルの制御性を改善するために,新しいプラン-then-Generate(PlanGen)フレームワークを提案する。
本モデルでは,生成した出力の文内構造と文間構造の両方を制御できる。
論文 参考訳(メタデータ) (2021-08-31T10:53:32Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Learning Contextual Representations for Semantic Parsing with
Generation-Augmented Pre-Training [86.91380874390778]
本稿では,生成モデルを活用して事前学習データを生成することで,自然言語発話と表スキーマの表現を共同で学習するGAPを提案する。
実験結果に基づいて、GAP MODELを利用するニューラルセマンティクスは、SPIDERとCRITERIA-to-generationベンチマークの両方で最新の結果を得る。
論文 参考訳(メタデータ) (2020-12-18T15:53:50Z) - KGPT: Knowledge-Grounded Pre-Training for Data-to-Text Generation [100.79870384880333]
知識に富んだテキストを生成するための知識基盤事前学習(KGPT)を提案する。
我々は、その効果を評価するために、3つの設定、すなわち、完全教師付き、ゼロショット、少数ショットを採用します。
ゼロショット設定では、WebNLG上で30 ROUGE-L以上を達成するが、他の全てのベースラインは失敗する。
論文 参考訳(メタデータ) (2020-10-05T19:59:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。