論文の概要: Smoothing Dialogue States for Open Conversational Machine Reading
- arxiv url: http://arxiv.org/abs/2108.12599v1
- Date: Sat, 28 Aug 2021 08:04:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-31 14:57:47.739897
- Title: Smoothing Dialogue States for Open Conversational Machine Reading
- Title(参考訳): オープン会話機械読解のための平滑な対話状態
- Authors: Zhuosheng Zhang, Siru Ouyang, Hai Zhao, Masao Utiyama and Eiichiro
Sumita
- Abstract要約: 本稿では,2つの対話状態を1つのデコーダとブリッジ決定と質問生成でスムーズにすることで,効果的なゲーティング戦略を提案する。
OR-ShARCデータセットを用いた実験により,本手法の有効性が示された。
- 参考スコア(独自算出の注目度): 70.83783364292438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational machine reading (CMR) requires machines to communicate with
humans through multi-turn interactions between two salient dialogue states of
decision making and question generation processes. In open CMR settings, as the
more realistic scenario, the retrieved background knowledge would be noisy,
which results in severe challenges in the information transmission. Existing
studies commonly train independent or pipeline systems for the two subtasks.
However, those methods are trivial by using hard-label decisions to activate
question generation, which eventually hinders the model performance. In this
work, we propose an effective gating strategy by smoothing the two dialogue
states in only one decoder and bridge decision making and question generation
to provide a richer dialogue state reference. Experiments on the OR-ShARC
dataset show the effectiveness of our method, which achieves new
state-of-the-art results.
- Abstract(参考訳): 会話型機械読取(cmr)は、意思決定と質問生成過程の2つの有能な対話状態間のマルチターンインタラクションを通じて機械と人間とのコミュニケーションを要求する。
オープンcmrの設定では、より現実的なシナリオとして、検索された背景知識は騒がしいため、情報伝達に深刻な課題が生じる。
既存の研究は通常、2つのサブタスクに対して独立したパイプラインシステムを訓練する。
しかし、これらの手法は、ハードラベル決定を用いて質問生成を活性化することで自明であり、最終的にはモデル性能を阻害する。
本研究では,2つの対話状態を1つのデコーダとブリッジ決定と質問生成でスムーズにすることで,よりリッチな対話状態参照を提供する効果的なゲーティング戦略を提案する。
OR-ShARCデータセットを用いた実験により,本手法の有効性が示された。
関連論文リスト
- Multimodal Contextual Dialogue Breakdown Detection for Conversational AI Models [1.4199474167684119]
マルチモーダルな文脈対話ブレークダウン(MultConDB)モデルを導入する。
このモデルは、69.27のF1を達成することで、他の既知の最高のモデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2024-04-11T23:09:18Z) - Collaborative Reasoning on Multi-Modal Semantic Graphs for
Video-Grounded Dialogue Generation [53.87485260058957]
本研究では,対話コンテキストと関連ビデオに基づいて応答を生成するビデオグラウンド・ダイアログ生成について検討する。
本課題の主な課題は,(1)事前学習言語モデル(PLM)に映像データを統合することの難しさである。
異なるモーダルの推論を協調的に行うマルチエージェント強化学習法を提案する。
論文 参考訳(メタデータ) (2022-10-22T14:45:29Z) - Towards End-to-End Open Conversational Machine Reading [57.18251784418258]
オープン検索型会話機械読解(OR-CMR)タスクでは,機械は対話履歴とテキスト知識ベースに応答するマルチターン質問を行う必要がある。
OR-CMRを完全エンドツーエンドで統一されたテキスト・ツー・テキスト・タスクとしてモデル化し、ShARCおよびOR-ShARCデータセットを用いた実験により、提案したエンドツーエンド・フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2022-10-13T15:50:44Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
対話システム研究における既存の研究は、主にタスク指向の対話とチャットを独立したドメインとして扱う。
本研究では,タスク指向対話と知識ベースチップチャットを一つのモデルに効果的に統合する方法について検討する。
論文 参考訳(メタデータ) (2022-05-11T16:01:03Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
音声による質問応答では、システムは関連する音声書き起こしの中に連続したテキストスパンからの質問に答えるように設計されている。
本稿では,複雑な対話フローをモデル化することを目的とした音声対話型質問応答タスク(SCQA)を提案する。
本研究の目的は,音声記録に基づく対話型質問に対処するシステムを構築することであり,情報収集システムによる様々なモダリティからより多くの手がかりを提供する可能性を探ることである。
論文 参考訳(メタデータ) (2022-04-29T17:56:59Z) - Achieving Conversational Goals with Unsupervised Post-hoc Knowledge
Injection [37.15893335147598]
現在のニューラルダイアログモデルの制限は、生成された応答における特異性と情報性の欠如に悩まされる傾向があることである。
本稿では,対話履歴と既存の対話モデルから初期応答の両方を条件とした,多様な知識スニペットの集合を検索する,ポストホックな知識注入手法を提案する。
我々は,各検索したスニペットを,勾配に基づく復号法を用いて初期応答に個別に注入し,教師なしランキングステップで最終応答を選択する複数の候補応答を構築する。
論文 参考訳(メタデータ) (2022-03-22T00:42:27Z) - Adapting Document-Grounded Dialog Systems to Spoken Conversations using
Data Augmentation and a Noisy Channel Model [46.93744191416991]
第10回ダイアログ・システム・テクノロジー・チャレンジ(DSTC10)第2章の報告を要約する。
このタスクは3つのサブタスクから構成される: ターンが知識を求めるかどうかを検知し、関連する知識文書を選択し、最後に接地された応答を生成する。
ベストシステムは,課題の人的評価において,第1位,第3位を達成できた。
論文 参考訳(メタデータ) (2021-12-16T12:51:52Z) - BERT-CoQAC: BERT-based Conversational Question Answering in Context [10.811729691130349]
履歴変換をシステム内に組み込むためのBERTという,パブリックに利用可能なプリトレーニング言語モデルに基づくフレームワークを紹介する。
実験の結果,我々のフレームワークはQuACリーダボードの最先端モデルと同等の性能を示した。
論文 参考訳(メタデータ) (2021-04-23T03:05:17Z) - Knowledgeable Dialogue Reading Comprehension on Key Turns [84.1784903043884]
MRC(Multi-choice Machine reading comprehension)は、ある項目と質問に対する候補オプションから正しい回答を選択するモデルである。
本研究は,複数回対話を行う対話型MRCに焦点を当てている。
それは2つの課題に悩まされ、答えの選択決定は、最近役に立つコモンセンスをサポートせずに行われ、マルチターンコンテキストは、かなりの無関係な情報を隠蔽する可能性がある。
論文 参考訳(メタデータ) (2020-04-29T07:04:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。