論文の概要: Sentence Structure and Word Relationship Modeling for Emphasis Selection
- arxiv url: http://arxiv.org/abs/2108.12750v1
- Date: Sun, 29 Aug 2021 04:43:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-01 05:03:44.268447
- Title: Sentence Structure and Word Relationship Modeling for Emphasis Selection
- Title(参考訳): 強調選択のための文構造と単語関係モデル
- Authors: Haoran Yang and Wai Lam
- Abstract要約: 強調選択は、短い文で強調する単語の選択に焦点を当てた、新しく提案されたタスクである。
従来の手法では、リッチな文構造と単語関係情報を無視しながら、文のシーケンス情報のみを考慮する。
本稿では,文構造グラフによる文構造と,単語類似性グラフによる単語関係を考慮した新しい枠組みを提案する。
- 参考スコア(独自算出の注目度): 33.71757542373714
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emphasis Selection is a newly proposed task which focuses on choosing words
for emphasis in short sentences. Traditional methods only consider the sequence
information of a sentence while ignoring the rich sentence structure and word
relationship information. In this paper, we propose a new framework that
considers sentence structure via a sentence structure graph and word
relationship via a word similarity graph. The sentence structure graph is
derived from the parse tree of a sentence. The word similarity graph allows
nodes to share information with their neighbors since we argue that in emphasis
selection, similar words are more likely to be emphasized together. Graph
neural networks are employed to learn the representation of each node of these
two graphs. Experimental results demonstrate that our framework can achieve
superior performance.
- Abstract(参考訳): 強調選択は、短い文で強調する単語の選択に焦点を当てた、新しく提案されたタスクである。
伝統的な方法は、リッチな文構造と単語関係情報を無視しながら、文のシーケンス情報のみを考える。
本稿では,文構造グラフによる文構造と,単語類似性グラフによる単語関係を考慮した新しい枠組みを提案する。
文構造グラフは、文の構文解析木から導出される。
類似度グラフは、重み付け選択において類似語が一緒に強調される可能性が高いと主張するので、ノードが隣人と情報を共有することができる。
グラフニューラルネットワークは、2つのグラフの各ノードの表現を学ぶために使用される。
実験の結果,我々のフレームワークは優れた性能を達成できることがわかった。
関連論文リスト
- Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
汎用知識グラフ(KG)を用いた会話意味解析の課題を,数百万のエンティティと数千のリレーショナルタイプで検討する。
ユーザ発話を実行可能な論理形式にインタラクティブにマッピングできるモデルに焦点を当てる。
論文 参考訳(メタデータ) (2023-05-04T16:04:41Z) - Neural Subgraph Explorer: Reducing Noisy Information via Target-Oriented
Syntax Graph Pruning [39.76268402567324]
本稿ではニューラル・サブグラフ・エクスプローラーと呼ばれる新しいモデルを提案する。
構文グラフ上でターゲット非関連ノードをプルーニングすることでノイズを低減します。
対象語とその関連語間の有益な一階接続を得られたグラフに導入する。
論文 参考訳(メタデータ) (2022-05-23T00:29:32Z) - Pruned Graph Neural Network for Short Story Ordering [0.7087237546722617]
コヒーレンスを最大化する順序に文を整理することは、文の順序付けとして知られている。
そこで本研究では,文章間のエッジを生成するために,短い物語の文中心グラフを構築する手法を提案する。
また,代名詞を代名詞の代名詞に置き換えることによって,文中心性グラフの文を効果的にエンコードすることが観察された。
論文 参考訳(メタデータ) (2022-03-13T22:25:17Z) - Hierarchical Heterogeneous Graph Representation Learning for Short Text
Classification [60.233529926965836]
短文分類のためのグラフニューラルネットワーク(GNN)に基づく ShiNE と呼ばれる新しい手法を提案する。
まず,短文データセットを単語レベル成分グラフからなる階層的不均一グラフとしてモデル化する。
そして、類似した短いテキスト間の効果的なラベル伝搬を容易にするショート文書グラフを動的に学習する。
論文 参考訳(メタデータ) (2021-10-30T05:33:05Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Multiplex Graph Neural Network for Extractive Text Summarization [34.185093491514394]
抽出テキスト要約は、ある文書から最も代表的な文章を要約として抽出することを目的としている。
文と単語の異なる関係を共同でモデル化する新しい多重グラフ畳み込みネットワーク(Multi-GCN)を提案する。
マルチGCNに基づいて,抽出テキスト要約のための多重グラフ要約(Multi-GraS)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-29T16:11:01Z) - Inducing Alignment Structure with Gated Graph Attention Networks for
Sentence Matching [24.02847802702168]
本稿では,文マッチングのためのグラフベースの手法を提案する。
文ペアをグラフとして表現し、慎重に設計する。
次に,文マッチングのために構築したグラフを符号化するために,新しいゲートグラフアテンションネットワークを用いる。
論文 参考訳(メタデータ) (2020-10-15T11:25:54Z) - Embedding Words in Non-Vector Space with Unsupervised Graph Learning [33.51809615505692]
GraphGlove: エンドツーエンドで学習される教師なしグラフワード表現について紹介する。
我々の設定では、各単語は重み付きグラフのノードであり、単語間の距離は対応するノード間の最短経路距離である。
グラフに基づく表現は、単語類似性や類似性タスクにおいて、ベクターベースの手法よりもかなり優れていることを示す。
論文 参考訳(メタデータ) (2020-10-06T10:17:49Z) - Heterogeneous Graph Neural Networks for Extractive Document
Summarization [101.17980994606836]
クロス文関係は、抽出文書要約における重要なステップである。
We present a graph-based neural network for extractive summarization (HeterSumGraph)
抽出文書要約のためのグラフベースニューラルネットワークに異なる種類のノードを導入する。
論文 参考訳(メタデータ) (2020-04-26T14:38:11Z) - Iterative Context-Aware Graph Inference for Visual Dialog [126.016187323249]
本稿では,新しいコンテキスト認識グラフ(CAG)ニューラルネットワークを提案する。
グラフの各ノードは、オブジェクトベース(視覚)と履歴関連(テキスト)コンテキスト表現の両方を含む、共同意味機能に対応している。
論文 参考訳(メタデータ) (2020-04-05T13:09:37Z) - Bridging Knowledge Graphs to Generate Scene Graphs [49.69377653925448]
本稿では,2つのグラフ間の情報伝達を反復的に行う新しいグラフベースニューラルネットワークを提案する。
我々のグラフブリッジネットワークであるGB-Netは、エッジとノードを連続的に推論し、相互接続されたシーンとコモンセンスグラフのリッチでヘテロジニアスな構造を同時に活用し、洗練する。
論文 参考訳(メタデータ) (2020-01-07T23:35:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。