Learning to Discover Reflection Symmetry via Polar Matching Convolution
- URL: http://arxiv.org/abs/2108.12952v1
- Date: Mon, 30 Aug 2021 01:50:51 GMT
- Title: Learning to Discover Reflection Symmetry via Polar Matching Convolution
- Authors: Ahyun Seo, Woohyeon Shim, Minsu Cho
- Abstract summary: We introduce a new convolutional technique, dubbed the polar matching convolution, which leverages a polar feature pooling, a self-similarity encoding, and a kernel design for axes of different angles.
The proposed high-dimensional kernel convolution network effectively learns to discover symmetry patterns from real-world images.
Experiments demonstrate that our method outperforms state-of-the-art methods in terms of accuracy and robustness.
- Score: 33.77926792753373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of reflection symmetry detection remains challenging due to
significant variations and ambiguities of symmetry patterns in the wild.
Furthermore, since the local regions are required to match in reflection for
detecting a symmetry pattern, it is hard for standard convolutional networks,
which are not equivariant to rotation and reflection, to learn the task. To
address the issue, we introduce a new convolutional technique, dubbed the polar
matching convolution, which leverages a polar feature pooling, a
self-similarity encoding, and a systematic kernel design for axes of different
angles. The proposed high-dimensional kernel convolution network effectively
learns to discover symmetry patterns from real-world images, overcoming the
limitations of standard convolution. In addition, we present a new dataset and
introduce a self-supervised learning strategy by augmenting the dataset with
synthesizing images. Experiments demonstrate that our method outperforms
state-of-the-art methods in terms of accuracy and robustness.
Related papers
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Metric Convolutions: A Unifying Theory to Adaptive Convolutions [3.481985817302898]
Metric convolutions replace standard convolutions in image processing and deep learning.
They require fewer parameters and provide better generalisation.
Our approach shows competitive performance in standard denoising and classification tasks.
arXiv Detail & Related papers (2024-06-08T08:41:12Z) - Partial Symmetry Detection for 3D Geometry using Contrastive Learning
with Geodesic Point Cloud Patches [10.48309709793733]
We propose to learn rotation, reflection, translation and scale invariant local shape features for geodesic point cloud patches.
We show that our approach is able to extract multiple valid solutions for this ambiguous problem.
We incorporate the detected symmetries together with a region growing algorithm to demonstrate a downstream task.
arXiv Detail & Related papers (2023-12-13T15:48:50Z) - Oracle-Preserving Latent Flows [58.720142291102135]
We develop a methodology for the simultaneous discovery of multiple nontrivial continuous symmetries across an entire labelled dataset.
The symmetry transformations and the corresponding generators are modeled with fully connected neural networks trained with a specially constructed loss function.
The two new elements in this work are the use of a reduced-dimensionality latent space and the generalization to transformations invariant with respect to high-dimensional oracles.
arXiv Detail & Related papers (2023-02-02T00:13:32Z) - Imaging with Equivariant Deep Learning [9.333799633608345]
We review the emerging field of equivariant imaging and show how it can provide improved generalization and new imaging opportunities.
We show the interplay between the acquisition physics and group actions and links to iterative reconstruction, blind compressed sensing and self-supervised learning.
arXiv Detail & Related papers (2022-09-05T02:13:57Z) - Reflection and Rotation Symmetry Detection via Equivariant Learning [40.61825212385055]
We introduce a group-equivariant convolutional network for symmetry detection, dubbed EquiSym.
We present a new dataset, DENse and DIverse symmetry (DENDI), which mitigates limitations of existing benchmarks for reflection and rotation symmetry detection.
Experiments show that our method achieves the state of the arts in symmetry detection on LDRS and DENDI datasets.
arXiv Detail & Related papers (2022-03-31T04:18:33Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Convolutional Hough Matching Networks [39.524998833064956]
We introduce a Hough transform perspective on convolutional matching and propose an effective geometric matching algorithm, dubbed Convolutional Hough Matching (CHM)
We cast it into a trainable neural layer with a semi-isotropic high-dimensional kernel, which learns non-rigid matching with a small number of interpretable parameters.
Our method sets a new state of the art on standard benchmarks for semantic visual correspondence, proving its strong robustness to challenging intra-class variations.
arXiv Detail & Related papers (2021-03-31T06:17:03Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
We introduce an efficient fully-convolutional architecture that can leverage both spatial and photometric context simultaneously.
Using separable 4D convolutions and 2D heat-maps reduces the size and makes more efficient.
arXiv Detail & Related papers (2021-03-22T18:06:58Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
This paper presents an uncalibrated deep neural network framework for the photometric stereo problem.
Existing neural network-based methods either require exact light directions or ground-truth surface normals of the object or both.
We propose an uncalibrated neural inverse rendering approach to this problem.
arXiv Detail & Related papers (2020-12-12T10:33:08Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.