VSQL: Variational Shadow Quantum Learning for Classification
- URL: http://arxiv.org/abs/2012.08288v1
- Date: Tue, 15 Dec 2020 13:51:01 GMT
- Title: VSQL: Variational Shadow Quantum Learning for Classification
- Authors: Guangxi Li, Zhixin Song, Xin Wang
- Abstract summary: We propose a new hybrid quantum-classical framework for supervised quantum learning, which we call Variational Shadow Quantum Learning.
We first use variational shadow quantum circuits to extract classical features in a convolution way and then utilize a fully-connected neural network to complete the classification task.
We show that this method could sharply reduce the number of parameters and thus better facilitate quantum circuit training.
- Score: 6.90132007891849
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classification of quantum data is essential for quantum machine learning and
near-term quantum technologies. In this paper, we propose a new hybrid
quantum-classical framework for supervised quantum learning, which we call
Variational Shadow Quantum Learning (VSQL). Our method in particular utilizes
the classical shadows of quantum data, which fundamentally represent the side
information of quantum data with respect to certain physical observables.
Specifically, we first use variational shadow quantum circuits to extract
classical features in a convolution way and then utilize a fully-connected
neural network to complete the classification task. We show that this method
could sharply reduce the number of parameters and thus better facilitate
quantum circuit training. Simultaneously, less noise will be introduced since
fewer quantum gates are employed in such shadow circuits. Moreover, we show
that the Barren Plateau issue, a significant gradient vanishing problem in
quantum machine learning, could be avoided in VSQL. Finally, we demonstrate the
efficiency of VSQL in quantum classification via numerical experiments on the
classification of quantum states and the recognition of multi-labeled
handwritten digits. In particular, our VSQL approach outperforms existing
variational quantum classifiers in the test accuracy in the binary case of
handwritten digit recognition and notably requires much fewer parameters.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - MORE: Measurement and Correlation Based Variational Quantum Circuit for
Multi-classification [10.969833959443495]
MORE stands for measurement and correlation based variational quantum multi-classifier.
We implement MORE using the Qiskit Python library and evaluate it through extensive experiments on both noise-free and noisy quantum systems.
arXiv Detail & Related papers (2023-07-21T19:33:10Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - VQE-generated Quantum Circuit Dataset for Machine Learning [0.5658123802733283]
We provide a dataset of quantum circuits optimized by variational quantum eigensolver.
We show that this dataset can be easily learned using quantum methods.
arXiv Detail & Related papers (2023-02-20T04:08:44Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent advances for quantum classifiers [2.459525036555352]
We will review a number of quantum classification algorithms, including quantum support vector machine, quantum kernel methods, quantum decision tree, and quantum nearest neighbor algorithm.
We will then introduce the variational quantum classifiers, which are essentially variational quantum circuits for classifications.
arXiv Detail & Related papers (2021-08-30T18:00:00Z) - Trainable Discrete Feature Embeddings for Variational Quantum Classifier [4.40450723619303]
We show how to map discrete features with fewer quantum bits using Quantum Random Access Coding (QRAC)
We propose a new method to embed discrete features with trainable quantum circuits by combining QRAC and a recently proposed strategy for training quantum feature map called quantum metric learning.
arXiv Detail & Related papers (2021-06-17T12:02:01Z) - Continuous Variable Quantum Advantages and Applications in Quantum
Optics [0.0]
This thesis focuses on three main questions in the continuous variable and optical settings.
Where does a quantum advantage, that is, the ability of quantum machines to outperform classical machines, come from?
What advantages can be gained in practice from the use of quantum information?
arXiv Detail & Related papers (2021-02-10T02:43:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.