DoGR: Disaggregated Gaussian Regression for Reproducible Analysis of
Heterogeneous Data
- URL: http://arxiv.org/abs/2108.13581v1
- Date: Tue, 31 Aug 2021 01:58:23 GMT
- Title: DoGR: Disaggregated Gaussian Regression for Reproducible Analysis of
Heterogeneous Data
- Authors: Nazanin Alipourfard, Keith Burghardt, Kristina Lerman
- Abstract summary: We introduce DoGR, a method that discovers latent confounders by simultaneously partitioning the data into overlapping clusters (disaggregation) and modeling the behavior within them (regression)
When applied to real-world data, our method discovers meaningful clusters and their characteristic behaviors, thus giving insight into group differences and their impact on the outcome of interest.
By accounting for latent confounders, our framework facilitates exploratory analysis of noisy, heterogeneous data and can be used to learn predictive models that better generalize to new data.
- Score: 4.720638420461489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantitative analysis of large-scale data is often complicated by the
presence of diverse subgroups, which reduce the accuracy of inferences they
make on held-out data. To address the challenge of heterogeneous data analysis,
we introduce DoGR, a method that discovers latent confounders by simultaneously
partitioning the data into overlapping clusters (disaggregation) and modeling
the behavior within them (regression). When applied to real-world data, our
method discovers meaningful clusters and their characteristic behaviors, thus
giving insight into group differences and their impact on the outcome of
interest. By accounting for latent confounders, our framework facilitates
exploratory analysis of noisy, heterogeneous data and can be used to learn
predictive models that better generalize to new data. We provide the code to
enable others to use DoGR within their data analytic workflows.
Related papers
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML) aims to derive knowledge from a collection of pre-trained models without accessing their original data.
Current methods often overlook the heterogeneity among pre-trained models, which leads to performance degradation due to task conflicts.
We propose Task Groupings Regularization, a novel approach that benefits from model heterogeneity by grouping and aligning conflicting tasks.
arXiv Detail & Related papers (2024-05-26T13:11:55Z) - A Guide for Practical Use of ADMG Causal Data Augmentation [0.0]
Causal data augmentation strategies have been pointed out as a solution to handle these challenges.
This paper experimentally analyzed the ADMG causal augmentation method considering different settings.
arXiv Detail & Related papers (2023-04-03T09:31:13Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Scalable Regularised Joint Mixture Models [2.0686407686198263]
In many applications, data can be heterogeneous in the sense of spanning latent groups with different underlying distributions.
We propose an approach for heterogeneous data that allows joint learning of (i) explicit multivariate feature distributions, (ii) high-dimensional regression models and (iii) latent group labels.
The approach is demonstrably effective in high dimensions, combining data reduction for computational efficiency with a re-weighting scheme that retains key signals even when the number of features is large.
arXiv Detail & Related papers (2022-05-03T13:38:58Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
We are interested in learning probabilistic generative models from high-dimensional heterogeneous data in an unsupervised fashion.
We propose a general framework that combines disparate data types through the exponential family of distributions.
The proposed algorithm is presented in detail for the commonly encountered heterogeneous datasets with real-valued (Gaussian) and categorical (multinomial) features.
arXiv Detail & Related papers (2021-08-27T18:10:31Z) - TRAPDOOR: Repurposing backdoors to detect dataset bias in machine
learning-based genomic analysis [15.483078145498085]
Under-representation of groups in datasets can lead to inaccurate predictions for certain groups, which can exacerbate systemic discrimination issues.
We propose TRAPDOOR, a methodology for identification of biased datasets by repurposing a technique that has been mostly proposed for nefarious purposes: Neural network backdoors.
Using a real-world cancer dataset, we analyze the dataset with the bias that already existed towards white individuals and also introduced biases in datasets artificially.
arXiv Detail & Related papers (2021-08-14T17:02:02Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
We define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics.
We prove that even when there is only bias of the input distribution, models can still pick up spurious features from their training data.
Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations.
arXiv Detail & Related papers (2021-06-14T05:39:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.