論文の概要: Like Article, Like Audience: Enforcing Multimodal Correlations for
Disinformation Detection
- arxiv url: http://arxiv.org/abs/2108.13892v1
- Date: Tue, 31 Aug 2021 14:50:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-01 18:50:20.187900
- Title: Like Article, Like Audience: Enforcing Multimodal Correlations for
Disinformation Detection
- Title(参考訳): 記事,Like Audience: 偽情報検出のためのマルチモーダル相関を強制する
- Authors: Liesbeth Allein, Marie-Francine Moens and Domenico Perrotta
- Abstract要約: ユーザ生成コンテンツとユーザ共有コンテンツの相関を利用して、オンラインニュース記事の偽情報を検出する。
偽情報検出のためのマルチモーダル学習アルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 20.394457328537975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: User-generated content (e.g., tweets and profile descriptions) and shared
content between users (e.g., news articles) reflect a user's online identity.
This paper investigates whether correlations between user-generated and
user-shared content can be leveraged for detecting disinformation in online
news articles. We develop a multimodal learning algorithm for disinformation
detection. The latent representations of news articles and user-generated
content allow that during training the model is guided by the profile of users
who prefer content similar to the news article that is evaluated, and this
effect is reinforced if that content is shared among different users. By only
leveraging user information during model optimization, the model does not rely
on user profiling when predicting an article's veracity. The algorithm is
successfully applied to three widely used neural classifiers, and results are
obtained on different datasets. Visualization techniques show that the proposed
model learns feature representations of unseen news articles that better
discriminate between fake and real news texts.
- Abstract(参考訳): ユーザ生成コンテンツ(ツイートやプロフィール記述など)とユーザ間の共有コンテンツ(ニュース記事など)は、ユーザのオンラインアイデンティティを反映している。
本稿では,ユーザ生成コンテンツとユーザ共有コンテンツとの相関が,オンラインニュース記事の偽情報検出に有効かどうかを検討する。
偽情報検出のためのマルチモーダル学習アルゴリズムを開発した。
ニュース記事の潜在表現とユーザ生成コンテンツにより、トレーニング中に評価対象のニュース記事と類似したコンテンツを好むユーザのプロファイルによってモデルがガイドされ、異なるユーザ間でコンテンツが共有されている場合、この効果が強化される。
モデル最適化中にユーザー情報を活用するだけで、モデルは記事の妥当性を予測する際にユーザープロファイリングに依存しない。
このアルゴリズムは、広く使われている3つのニューラル分類器に適用され、異なるデータセットで結果が得られる。
可視化手法により,提案モデルでは,偽ニュースと実ニュースを区別した未確認ニュース記事の特徴表現が学習された。
関連論文リスト
- Assessing In-context Learning and Fine-tuning for Topic Classification of German Web Data [3.2771631221674333]
トピック関連コンテンツの検出をバイナリ分類タスクとしてモデル化する。
トピックごとの注釈付きデータポイントはわずか数百で、ドイツの3つのポリシーに関連するコンテンツを検出する。
論文 参考訳(メタデータ) (2024-07-23T14:31:59Z) - Exposing and Explaining Fake News On-the-Fly [4.278181795494584]
この研究は、偽ニュースをリアルタイムで認識するための説明可能なオンライン分類手法に寄与する。
提案手法は、教師なしおよび教師なしの機械学習アプローチとオンライン生成レキシカを組み合わせたものである。
提案手法の性能はTwitterの実際のデータセットで検証され,その結果は80%精度とマクロF測定値を得た。
論文 参考訳(メタデータ) (2024-05-03T14:49:04Z) - SoMeR: Multi-View User Representation Learning for Social Media [1.7949335303516192]
本稿では,ソーシャルメディアのユーザ表現学習フレームワークであるSoMeRを提案する。
SoMeRは、ユーザ投稿ストリームをタイムスタンプ付きテキスト機能のシーケンスとしてエンコードし、トランスフォーマーを使用してプロファイルデータと共にそれを埋め込み、リンク予測とコントラスト学習の目標を共同でトレーニングする。
1)類似コンテンツを同時に投稿するユーザを検出することによって、協調的な影響操作に関わる不正確なアカウントを同定し、2)異なる信念を持つユーザがより遠くへ移動する様子を定量化して、主要なイベント後のオンライン議論における偏光の増大を測定する。
論文 参考訳(メタデータ) (2024-05-02T22:26:55Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
入力テキストにおける意味保存的変化がモデルを誤解させる可能性があることを示す。
また、誤情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAについても紹介する。
我々の実験結果によると、現代の大規模言語モデルは、以前のより小さなソリューションよりも攻撃に対して脆弱であることが多い。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - Panning for gold: Lessons learned from the platform-agnostic automated
detection of political content in textual data [48.7576911714538]
異なるプラットフォーム間で政治的コンテンツを検出するために、これらの技術がどのように使用できるかについて議論する。
辞書,教師付き機械学習,ニューラルネットワークに依存する3つの検出手法のパフォーマンスを比較した。
この結果から,ニューラルネットワークと機械学習に基づくモデルによって達成されるノイズの少ないデータに対して,事前処理がモデル性能に与える影響が限定された。
論文 参考訳(メタデータ) (2022-07-01T15:23:23Z) - Learning Personalized Item-to-Item Recommendation Metric via Implicit
Feedback [24.37151414523712]
本稿では,暗黙のフィードバックによるメトリクス学習の新しい視点から,レコメンデーションシステムにおける項目間推薦問題について検討する。
本研究では,アイテムの内部コンテンツとユーザによるインタラクションの両方をキャプチャする,パーソナライズ可能なディープメトリックモデルを開発し,検討する。
論文 参考訳(メタデータ) (2022-03-18T18:08:57Z) - Twitter Referral Behaviours on News Consumption with Ensemble Clustering
of Click-Stream Data in Turkish Media [2.9005223064604078]
本研究は,Twitter のレファレンスに追随するニュース消費パターンを識別するために,組織ウェブサイトにおける読者のクリック活動について調査する。
調査は、ログデータをニュースコンテンツとリンクして洞察を深めることで、幅広い視点に展開されている。
論文 参考訳(メタデータ) (2022-02-04T09:57:13Z) - Perceptual Score: What Data Modalities Does Your Model Perceive? [73.75255606437808]
モデルが入力特徴の異なる部分集合に依存する度合いを評価する指標である知覚スコアを導入する。
近年,視覚的質問応答に対するマルチモーダルモデルでは,前者よりも視覚的データを知覚しにくい傾向がみられた。
知覚スコアを使用することで、スコアをデータサブセットのコントリビューションに分解することで、モデルのバイアスを分析することもできる。
論文 参考訳(メタデータ) (2021-10-27T12:19:56Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z) - Disentangled Graph Collaborative Filtering [100.26835145396782]
Disentangled Graph Collaborative Filtering (DGCF)は、インタラクションデータからユーザとアイテムの情報表現を学ぶための新しいモデルである。
ユーザ・イテムのインタラクション毎に意図を超越した分布をモデル化することにより、インテント・アウェアなインタラクショングラフと表現を反復的に洗練する。
DGCFはNGCF、DisenGCN、MacridVAEといった最先端モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-07-03T15:37:25Z) - Automatic Validation of Textual Attribute Values in E-commerce Catalog
by Learning with Limited Labeled Data [61.789797281676606]
そこで我々はMetaBridgeと呼ばれる新しいメタ学習潜伏変数アプローチを提案する。
限られたラベル付きデータを持つカテゴリのサブセットから、転送可能な知識を学ぶことができる。
ラベルのないデータで、目に見えないカテゴリの不確実性を捉えることができる。
論文 参考訳(メタデータ) (2020-06-15T21:31:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。