論文の概要: A Novel Dataset for Keypoint Detection of quadruped Animals from Images
- arxiv url: http://arxiv.org/abs/2108.13958v1
- Date: Tue, 31 Aug 2021 16:40:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-01 16:38:16.504134
- Title: A Novel Dataset for Keypoint Detection of quadruped Animals from Images
- Title(参考訳): 画像から四足動物のキーポイント検出のための新しいデータセット
- Authors: Prianka Banik, Lin Li, Xishuang Dong
- Abstract要約: AwA Poseは、画像から四足動物をキーポイントで検出するための新しいデータセットである。
我々は、異なるキーポイント検出タスクのための最先端のディープラーニングモデルでデータセットをベンチマークした。
- 参考スコア(独自算出の注目度): 9.820186342227252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we studied the problem of localizing a generic set of
keypoints across multiple quadruped or four-legged animal species from images.
Due to the lack of large scale animal keypoint dataset with ground truth
annotations, we developed a novel dataset, AwA Pose, for keypoint detection of
quadruped animals from images. Our dataset contains significantly more
keypoints per animal and has much more diverse animals than the existing
datasets for animal keypoint detection. We benchmarked the dataset with a
state-of-the-art deep learning model for different keypoint detection tasks,
including both seen and unseen animal cases. Experimental results showed the
effectiveness of the dataset. We believe that this dataset will help the
computer vision community in the design and evaluation of improved models for
the generalized quadruped animal keypoint detection problem.
- Abstract(参考訳): 本稿では,4本足または4本足の複数の動物種にまたがる共通キーポイント群を画像から配置する問題について検討した。
地上真理アノテーションを用いた大規模動物用キーポイントデータセットの欠如により,画像から四足動物のキーポイント検出のための新しいデータセットであるawa poseを開発した。
我々のデータセットは、動物毎のキーポイントをはるかに多く含み、既存の動物キーポイント検出用データセットよりもはるかに多様な動物を持っている。
このデータセットを最先端のディープラーニングモデルでベンチマークし、キーポイント検出タスクをそれぞれ行ないました。
実験の結果,データセットの有効性が示された。
このデータセットは、一般化された四足動物のキーポイント検出問題に対する改良されたモデルの設計と評価において、コンピュータビジョンコミュニティに役立つと信じている。
関連論文リスト
- PoseBench: Benchmarking the Robustness of Pose Estimation Models under Corruptions [57.871692507044344]
ポース推定は、単眼画像を用いて人や動物の解剖学的キーポイントを正確に同定することを目的としている。
現在のモデルは一般的に、クリーンなデータに基づいてトレーニングされ、テストされる。
実世界の腐敗に対するポーズ推定モデルの堅牢性を評価するためのベンチマークであるPoseBenchを紹介する。
論文 参考訳(メタデータ) (2024-06-20T14:40:17Z) - AnimalFormer: Multimodal Vision Framework for Behavior-based Precision Livestock Farming [0.0]
精密畜産のためのマルチモーダルビジョン・フレームワークを提案する。
我々は、GroundingDINO、HQSAM、ViTPoseモデルのパワーを利用する。
このスイートは、侵入的な動物タグ付けをすることなく、ビデオデータから包括的な行動分析を可能にする。
論文 参考訳(メタデータ) (2024-06-14T04:42:44Z) - From Forest to Zoo: Great Ape Behavior Recognition with ChimpBehave [0.0]
ChimpBehaveは動物園で飼育されているチンパンジーの2時間以上のビデオ(約193,000フレーム)を特徴とする新しいデータセットだ。
ChimpBehaveは、アクション認識のためのバウンディングボックスやビヘイビアラベルに細心の注意を払ってアノテートする。
我々は、最先端のCNNベースの行動認識モデルを用いてデータセットをベンチマークする。
論文 参考訳(メタデータ) (2024-05-30T13:11:08Z) - Learning 3D Human Pose Estimation from Dozens of Datasets using a
Geometry-Aware Autoencoder to Bridge Between Skeleton Formats [80.12253291709673]
本稿では,アフィン結合型オートエンコーダ(ACAE)法を提案する。
このアプローチは、28人の人間のポーズデータセットを使って1つのモデルを監督する、極端なマルチデータセット体制にスケールします。
論文 参考訳(メタデータ) (2022-12-29T22:22:49Z) - Prior-Aware Synthetic Data to the Rescue: Animal Pose Estimation with
Very Limited Real Data [18.06492246414256]
そこで本研究では,対象動物からの実際の画像のみを必要とする四足歩行におけるポーズ推定のためのデータ効率のよい戦略を提案する。
ImageNetのような一般的な画像データセットに事前トレーニングされた重み付きバックボーンネットワークを微調整することで、ターゲット動物のポーズデータに対する高い需要を軽減できることが確認された。
そこで我々はPASynと呼ばれる先行認識型合成動物データ生成パイプラインを導入し,ロバストポーズ推定に不可欠な動物のポーズデータを増やした。
論文 参考訳(メタデータ) (2022-08-30T01:17:50Z) - CLAMP: Prompt-based Contrastive Learning for Connecting Language and
Animal Pose [70.59906971581192]
本稿では,言語とAniMal Poseを効果的に接続するための,新しいプロンプトベースのコントラスト学習手法を提案する。
CLAMPは、ネットワークトレーニング中にテキストプロンプトを動物のキーポイントに適応させることでギャップを埋めようとしている。
実験結果から, 教師付き, 少数ショット, ゼロショット設定下での最先端性能が得られた。
論文 参考訳(メタデータ) (2022-06-23T14:51:42Z) - APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking [77.87449881852062]
APT-36Kは動物のポーズ推定と追跡のための最初の大規模ベンチマークである。
このビデオは、30種の動物から収集・フィルタリングされた2,400のビデオクリップと、各ビデオの15フレームで構成されており、合計で36,000フレームとなっている。
我々は,(1)ドメイン内およびドメイン間移動学習環境下での単一フレームでの動物ポーズ推定,(2)未確認動物に対する種間ドメイン一般化テスト,(3)動物追跡による動物ポーズ推定の3つのモデルについて,いくつかの代表的モデルをベンチマークした。
論文 参考訳(メタデータ) (2022-06-12T07:18:36Z) - SuperAnimal pretrained pose estimation models for behavioral analysis [42.206265576708255]
行動の定量化は神経科学、獣医学、動物保護活動など様々な応用において重要である。
我々は、SuperAnimalと呼ばれる新しい手法で統一基盤モデルを開発するための一連の技術革新を提案する。
論文 参考訳(メタデータ) (2022-03-14T18:46:57Z) - Persistent Animal Identification Leveraging Non-Visual Markers [71.14999745312626]
乱雑なホームケージ環境下で各マウスにユニークな識別子を時間をかけて発見し提供することを目的としている。
これは、(i)各マウスの視覚的特徴の区別の欠如、(ii)一定の閉塞を伴うシーンの密閉性のため、非常に難しい問題である。
本手法は, この動物識別問題に対して77%の精度を達成し, 動物が隠れているときの急激な検出を拒否することができる。
論文 参考訳(メタデータ) (2021-12-13T17:11:32Z) - Pretrained equivariant features improve unsupervised landmark discovery [69.02115180674885]
我々は、この課題を克服する2段階の教師なしアプローチを、強力なピクセルベースの特徴を初めて学習することによって定式化する。
本手法は,いくつかの難解なランドマーク検出データセットにおいて最先端の結果を生成する。
論文 参考訳(メタデータ) (2021-04-07T05:42:11Z) - Semi-supervised Keypoint Localization [12.37129078618206]
キーポイントのヒートマップを同時に学習し、不変なキーポイント表現を半監督的に提示することを提案する。
提案手法は,ヒトおよび動物の身体ランドマークの定位に関するいくつかのベンチマークにおいて,従来の手法を著しく上回っている。
論文 参考訳(メタデータ) (2021-01-20T06:23:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。