論文の概要: Bio-inspired robot perception coupled with robot-modeled human
perception
- arxiv url: http://arxiv.org/abs/2109.00097v1
- Date: Tue, 31 Aug 2021 22:22:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-02 14:13:39.807422
- Title: Bio-inspired robot perception coupled with robot-modeled human
perception
- Title(参考訳): バイオインスパイアされたロボット知覚とロボットモデルによる人間知覚
- Authors: Tobias Fischer
- Abstract要約: 私の目指す研究目標は、人間のような方法で人間と対話できる知覚能力を持つロボットを提供することです。
私は人間の視覚システムの原理を使って新しいコンピュータビジョンアルゴリズムを開発します。
- 参考スコア(独自算出の注目度): 4.534608952448841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: My overarching research goal is to provide robots with perceptional abilities
that allow interactions with humans in a human-like manner. To develop these
perceptional abilities, I believe that it is useful to study the principles of
the human visual system. I use these principles to develop new computer vision
algorithms and validate their effectiveness in intelligent robotic systems. I
am enthusiastic about this approach as it offers the dual benefit of uncovering
principles inherent in the human visual system, as well as applying these
principles to its artificial counterpart. Fig. 1 contains a depiction of my
research.
- Abstract(参考訳): 私の目指す研究目標は、人間のような方法で人間と対話できる知覚能力を持つロボットを提供することです。
これらの知覚能力を開発するためには,人間の視覚システムの原理を研究することが有用であると考えられる。
私はこれらの原則を使って、新しいコンピュータビジョンアルゴリズムを開発し、インテリジェントなロボットシステムでの有効性を検証する。
私はこのアプローチに熱心です。それは、人間の視覚システムに固有の原則を明らかにすることと、これらの原則をその人工的なシステムに適用することの2つの利点を提供します。
フィギュア。
1は私の研究の描写を含んでいる。
関連論文リスト
- Human-oriented Representation Learning for Robotic Manipulation [64.59499047836637]
人間は本質的に、操作作業において環境を効率的に探索し、相互作用することを可能にする、一般化可能な視覚表現を持っている。
我々は、このアイデアを、事前訓練された視覚エンコーダの上に、人間指向のマルチタスク微調整のレンズを通してフォーマル化する。
我々のタスクフュージョンデコーダは、下流操作ポリシー学習のための最先端の3つのビジュアルエンコーダの表現を一貫して改善する。
論文 参考訳(メタデータ) (2023-10-04T17:59:38Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - See, Hear, and Feel: Smart Sensory Fusion for Robotic Manipulation [49.925499720323806]
視覚的、聴覚的、触覚的知覚が、ロボットが複雑な操作タスクを解くのにどのように役立つかを研究する。
私たちは、カメラで見たり、コンタクトマイクで聞いたり、視覚ベースの触覚センサーで感じるロボットシステムを構築しました。
論文 参考訳(メタデータ) (2022-12-07T18:55:53Z) - Neuroscience-inspired perception-action in robotics: applying active
inference for state estimation, control and self-perception [2.1067139116005595]
神経科学の発見が、ロボット工学における現在の推定と制御アルゴリズムを改善する機会をいかに開放するかについて議論する。
本稿では,実体プラットフォーム上でのこのような計算モデルの開発から得られた実験と教訓を要約する。
論文 参考訳(メタデータ) (2021-05-10T10:59:38Z) - Sensorimotor representation learning for an "active self" in robots: A
model survey [10.649413494649293]
人間では、これらの能力は宇宙で私たちの身体を知覚する能力と関連していると考えられている。
本稿では,これらの能力の発達過程について概説する。
人工エージェントにおける自己感覚の出現を可能にする理論計算フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-25T16:31:01Z) - Enabling the Sense of Self in a Dual-Arm Robot [2.741266294612776]
本稿では、デュアルアームロボットが環境中で自身の感覚を得ることを可能にするニューラルネットワークアーキテクチャを提案する。
本研究では, 環境条件が乱れた場合, ロボットが平均88.7%の精度で自分自身を識別できることを実験的に実証した。
論文 参考訳(メタデータ) (2020-11-13T17:25:07Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - Learning to Complement Humans [67.38348247794949]
オープンワールドにおけるAIに対するビジョンの高まりは、知覚、診断、推論タスクのために人間を補完できるシステムの開発に焦点を当てている。
我々は,人間-機械チームの複合的なパフォーマンスを最適化するために,エンド・ツー・エンドの学習戦略をどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2020-05-01T20:00:23Z) - Robot self/other distinction: active inference meets neural networks
learning in a mirror [9.398766540452632]
ロボットがミラー上で非出現自認を行うことを可能にするアルゴリズムを提案する。
このアルゴリズムは、脳内の知覚と行動の理論モデルであるアクティブ推論とニューラルネットワーク学習を組み合わせる。
ヒューマノイドロボットの実験結果から,初期条件の異なるアルゴリズムの信頼性が示された。
論文 参考訳(メタデータ) (2020-04-11T19:51:47Z) - A Model of Fast Concept Inference with Object-Factorized Cognitive
Programs [3.4763296976688443]
対象の分解とサブゴールの認知をエミュレートし、人間のレベルの推論速度を向上し、精度を改善し、出力をより説明しやすくするアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-10T18:48:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。