論文の概要: Sensorimotor representation learning for an "active self" in robots: A
model survey
- arxiv url: http://arxiv.org/abs/2011.12860v2
- Date: Tue, 12 Jan 2021 14:03:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 03:21:12.670165
- Title: Sensorimotor representation learning for an "active self" in robots: A
model survey
- Title(参考訳): ロボットにおける「能動的自己」のための感覚運動表現学習--モデル調査
- Authors: Phuong D.H. Nguyen, Yasmin Kim Georgie, Ezgi Kayhan, Manfred Eppe,
Verena Vanessa Hafner, and Stefan Wermter
- Abstract要約: 人間では、これらの能力は宇宙で私たちの身体を知覚する能力と関連していると考えられている。
本稿では,これらの能力の発達過程について概説する。
人工エージェントにおける自己感覚の出現を可能にする理論計算フレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.649413494649293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe human-robot interactions require robots to be able to learn how to
behave appropriately in \sout{humans' world} \rev{spaces populated by people}
and thus to cope with the challenges posed by our dynamic and unstructured
environment, rather than being provided a rigid set of rules for operations. In
humans, these capabilities are thought to be related to our ability to perceive
our body in space, sensing the location of our limbs during movement, being
aware of other objects and agents, and controlling our body parts to interact
with them intentionally. Toward the next generation of robots with bio-inspired
capacities, in this paper, we first review the developmental processes of
underlying mechanisms of these abilities: The sensory representations of body
schema, peripersonal space, and the active self in humans. Second, we provide a
survey of robotics models of these sensory representations and robotics models
of the self; and we compare these models with the human counterparts. Finally,
we analyse what is missing from these robotics models and propose a theoretical
computational framework, which aims to allow the emergence of the sense of self
in artificial agents by developing sensory representations through
self-exploration.
- Abstract(参考訳): 安全な人間とロボットの相互作用は、ロボットが「人間」の世界で適切に振る舞う方法を学ばなければならないため、操作のための厳格なルールを提供するのではなく、動的で非構造的な環境によって引き起こされる課題に対処する必要がある。
人間では、これらの能力は私たちの身体を宇宙で知覚し、運動中の手足の位置を感知し、他の物体やエージェントを認識し、身体の一部が故意に相互作用するように制御する能力と関係していると考えられている。
バイオインスパイアされた能力を持つ次世代ロボットについて,まず,身体スキーマの感覚表現,対人空間,人間の活動的自己など,これらの能力の根底にあるメカニズムの発達過程を概観する。
第二に、これらの感覚表現のロボットモデルと自己のロボットモデルについての調査を行い、これらのモデルを人間モデルと比較する。
最後に,これらのロボットモデルに欠けているものを解析し,自己爆発による感覚表現を発達させることにより,人工エージェントにおける自己感覚の出現を可能にするための理論的計算枠組みを提案する。
関連論文リスト
- HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Learning body models: from humans to humanoids [2.855485723554975]
人間と動物は、複数の感覚のモダリティからの情報を組み合わせて、複雑な体を制御し、成長、失敗、ツールの使用に適応する。
鍵となる基礎は、エージェント(人間、動物、ロボット)が開発してきた身体の内部表現である。
脳内での体モデルの操作のメカニズムは、ほとんど不明であり、出生後の経験からどのように構築されているかは、あまり分かっていない。
論文 参考訳(メタデータ) (2022-11-06T07:30:01Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
本稿では,空間コンピューティングを応用し,新しいロボットのユースケースを実現するためのロボットシステムについて述べる。
空間コンピューティングとエゴセントリックな感覚を複合現実感デバイスに組み合わせることで、人間の行動をキャプチャして理解し、それらを空間的な意味を持つ行動に変換することができる。
論文 参考訳(メタデータ) (2022-02-03T10:04:26Z) - From Movement Kinematics to Object Properties: Online Recognition of
Human Carefulness [112.28757246103099]
ロボットは、視覚だけで、人間のパートナーが物体を動かす際に注意を払っているかを、どのようにオンラインで推測できるかを示す。
我々は,低解像度カメラでも高い精度(最大81.3%)でこの推論を行うことができることを示した。
パートナーの行動を観察することによる動きの注意の迅速な認識により、ロボットはオブジェクトに対する行動に適応し、人間のパートナーと同じケアの度合いを示すことができる。
論文 参考訳(メタデータ) (2021-09-01T16:03:13Z) - Neuroscience-inspired perception-action in robotics: applying active
inference for state estimation, control and self-perception [2.1067139116005595]
神経科学の発見が、ロボット工学における現在の推定と制御アルゴリズムを改善する機会をいかに開放するかについて議論する。
本稿では,実体プラットフォーム上でのこのような計算モデルの開発から得られた実験と教訓を要約する。
論文 参考訳(メタデータ) (2021-05-10T10:59:38Z) - Enabling the Sense of Self in a Dual-Arm Robot [2.741266294612776]
本稿では、デュアルアームロボットが環境中で自身の感覚を得ることを可能にするニューラルネットワークアーキテクチャを提案する。
本研究では, 環境条件が乱れた場合, ロボットが平均88.7%の精度で自分自身を識別できることを実験的に実証した。
論文 参考訳(メタデータ) (2020-11-13T17:25:07Z) - Affect-Driven Modelling of Robot Personality for Collaborative
Human-Robot Interactions [16.40684407420441]
協調的な相互作用は、人間の感情的行動のダイナミクスに適応するために社会ロボットを必要とする。
社会ロボットにおける人格駆動行動生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-10-14T16:34:14Z) - Modeling emotion for human-like behavior in future intelligent robots [0.913755431537592]
我々は、神経科学が芸術の現在の状態をいかに前進させるかを示す。
ロボットモデルにおける感情関連プロセスのより強力な統合は、人間のような行動の設計に不可欠である、と我々は主張する。
論文 参考訳(メタデータ) (2020-09-30T17:32:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。