論文の概要: Regional Adversarial Training for Better Robust Generalization
- arxiv url: http://arxiv.org/abs/2109.00678v1
- Date: Thu, 2 Sep 2021 02:48:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-03 14:04:18.502029
- Title: Regional Adversarial Training for Better Robust Generalization
- Title(参考訳): 強固な一般化のための地域対応訓練
- Authors: Chuanbiao Song, Yanbo Fan, Yicheng Yang, Baoyuan Wu, Yiming Li,
Zhifeng Li, Kun He
- Abstract要約: 良性サンプル近傍の摂動点の特性と多様性を考察した,新たな対人訓練フレームワークを提案する。
RATは、標準対人訓練(SAT)を継続的に改善し、より堅牢な一般化を示す。
- 参考スコア(独自算出の注目度): 34.91562253930022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial training (AT) has been demonstrated as one of the most promising
defense methods against various adversarial attacks. To our knowledge, existing
AT-based methods usually train with the locally most adversarial perturbed
points and treat all the perturbed points equally, which may lead to
considerably weaker adversarial robust generalization on test data. In this
work, we introduce a new adversarial training framework that considers the
diversity as well as characteristics of the perturbed points in the vicinity of
benign samples. To realize the framework, we propose a Regional Adversarial
Training (RAT) defense method that first utilizes the attack path generated by
the typical iterative attack method of projected gradient descent (PGD), and
constructs an adversarial region based on the attack path. Then, RAT samples
diverse perturbed training points efficiently inside this region, and utilizes
a distance-aware label smoothing mechanism to capture our intuition that
perturbed points at different locations should have different impact on the
model performance. Extensive experiments on several benchmark datasets show
that RAT consistently makes significant improvement on standard adversarial
training (SAT), and exhibits better robust generalization.
- Abstract(参考訳): 対戦訓練(AT)は、様々な敵攻撃に対する最も有望な防御方法の1つとして実証されている。
我々の知る限り、既存のATベースの手法は、通常、最も敵対的な摂動点を訓練し、全ての摂動点を等しく扱う。
本研究では,その多様性と,良性サンプル近傍の摂動点の特性を考察した,新たな対角トレーニングフレームワークを提案する。
この枠組みを実現するために,本手法では,まず,典型的な射影勾配降下法(pgd)による攻撃経路を活用し,攻撃経路に基づく攻撃領域を構築する地域敵訓練(rat)防御手法を提案する。
次に、RATは、この領域内で様々な摂動トレーニングポイントを効率的にサンプリングし、距離対応ラベル平滑化機構を用いて、異なる場所の摂動ポイントがモデル性能に異なる影響を与えるであろう直感を捉える。
いくつかのベンチマークデータセットの大規模な実験により、RATは標準対人訓練(SAT)を一貫して改善し、より堅牢な一般化を示す。
関連論文リスト
- Beyond Empirical Risk Minimization: Local Structure Preserving
Regularization for Improving Adversarial Robustness [28.853413482357634]
局所構造保存(LSP)正則化は、学習された埋め込み空間における入力空間の局所構造を保存することを目的としている。
本研究では,学習した埋め込み空間における入力空間の局所構造を保存することを目的とした,新しい局所構造保存(LSP)正規化を提案する。
論文 参考訳(メタデータ) (2023-03-29T17:18:58Z) - MIXPGD: Hybrid Adversarial Training for Speech Recognition Systems [18.01556863687433]
ASRシステムのモデルの堅牢性を向上させるために,混合PGD逆行訓練法を提案する。
標準的な対人訓練では、教師なしまたは教師なしの手法を利用して、敵のサンプルを生成する。
我々は,モデルロバスト性向上に役立つ新しい対向サンプルを生成するために,教師付きアプローチと教師なしアプローチの両機能を融合する。
論文 参考訳(メタデータ) (2023-03-10T07:52:28Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
深層学習システムは、人間の目には認識できないが、モデルが誤分類される可能性がある、人工的な敵の例に弱い。
我々は,オリジナルモデルに対する多様な決定境界を持つディフェンダーモデルを構築するための,アンサンブルに基づく新しいソリューションを開発した。
我々は、MNIST、CIFAR-10、CIFAR-100といった標準画像分類データセットを用いて、最先端の敵攻撃に対する広範な実験を行った。
論文 参考訳(メタデータ) (2022-08-18T08:19:26Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
本稿では,特徴分離性を備えた対人訓練(ATFS)により,クラス内特徴の類似性を向上し,クラス間特徴分散を増大させることができる,新たな対人訓練グラフ(ATG)を提案する。
包括的な実験を通じて、提案したATFSフレームワークがクリーンかつロバストなパフォーマンスを著しく改善することを示した。
論文 参考訳(メタデータ) (2022-05-02T04:04:23Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Constant Random Perturbations Provide Adversarial Robustness with
Minimal Effect on Accuracy [41.84118016227271]
本稿では,ニューラルネットワークモデルの敵対的ロバスト性を改善するための攻撃非依存(非敵訓練)手法を提案する。
各トレーニング例の周辺に,その地区内のすべての入力に対してラベルが一定に維持されるような地区を作成することを提案する。
提案手法は,バニラ対人訓練と比較してロバスト性を高めつつ,他の防御に対する標準精度を向上させることが示唆された。
論文 参考訳(メタデータ) (2021-03-15T10:44:59Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。