論文の概要: Provable Regret Bounds for Deep Online Learning and Control
- arxiv url: http://arxiv.org/abs/2110.07807v1
- Date: Fri, 15 Oct 2021 02:13:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-18 14:19:15.938803
- Title: Provable Regret Bounds for Deep Online Learning and Control
- Title(参考訳): オンライン深層学習と制御のための確率的回帰境界
- Authors: Xinyi Chen, Edgar Minasyan, Jason D. Lee, Elad Hazan
- Abstract要約: 我々は、損失関数がニューラルネットワークのパラメータを最適化するために適応できることを示し、後から最も優れたネットと競合することを示す。
オンライン設定におけるこれらの結果の適用として、オンライン制御コントローラの証明可能なバウンダリを得る。
- 参考スコア(独自算出の注目度): 77.77295247296041
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of deep neural networks has been highly successful in reinforcement
learning and control, although few theoretical guarantees for deep learning
exist for these problems. There are two main challenges for deriving
performance guarantees: a) control has state information and thus is inherently
online and b) deep networks are non-convex predictors for which online learning
cannot provide provable guarantees in general.
Building on the linearization technique for overparameterized neural
networks, we derive provable regret bounds for efficient online learning with
deep neural networks. Specifically, we show that over any sequence of convex
loss functions, any low-regret algorithm can be adapted to optimize the
parameters of a neural network such that it competes with the best net in
hindsight. As an application of these results in the online setting, we obtain
provable bounds for online episodic control with deep neural network
controllers.
- Abstract(参考訳): 深層ニューラルネットワークの使用は強化学習と制御に非常に成功したが、これらの問題に対して深層学習に対する理論的保証はほとんど存在しない。
パフォーマンス保証の導出には2つの大きな課題がある。
a) 制御は,状態情報を持ち,本質的にオンラインであり,かつ
b)ディープネットワークは、オンライン学習が一般に証明可能な保証を提供することができない非凸予測器である。
過パラメータニューラルネットワークの線形化手法に基づいて,ディープニューラルネットワークを用いた効率的なオンライン学習のための証明可能な後悔領域を導出する。
具体的には、任意の凸損失関数列に対して、ニューラルネットワークのパラメータを最適化するための低抵抗アルゴリズムを適用することで、後見において最良のネットと競合できることを示す。
オンライン環境におけるこれらの結果の応用として,ディープニューラルネットワークコントローラを用いたオンラインエピソディック制御のための証明可能な境界を求める。
関連論文リスト
- Computability of Classification and Deep Learning: From Theoretical Limits to Practical Feasibility through Quantization [53.15874572081944]
ディープラーニングフレームワークにおける計算可能性について,2つの観点から検討する。
根底にある問題が十分に解決された場合でも、ディープニューラルネットワークを訓練する際のアルゴリズム上の制限を示す。
最後に、分類と深層ネットワークトレーニングの定量化バージョンにおいて、計算可能性の制限は発生せず、一定の程度まで克服可能であることを示す。
論文 参考訳(メタデータ) (2024-08-12T15:02:26Z) - Neural Network Pruning as Spectrum Preserving Process [7.386663473785839]
行列スペクトル学習とニューラルネットワーク学習の密集層と畳み込み層との密接な関係を同定する。
本稿では,ニューラルネットワークのプルーニングに適した行列スペーシフィケーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-18T05:39:32Z) - Rational Neural Network Controllers [0.0]
最近の研究は、制御システム(ニューラルフィードバックループとして知られる)におけるニューラルネットワークの有効性を実証している。
このアプローチの大きな課題のひとつは、ニューラルネットワークが敵の攻撃に敏感であることが示されていることだ。
本稿では、有理性ニューラルネットワークを考察し、ニューラルフィードバックループのロバストネス問題に有効に使用できる新しい有理性活性化関数を提案する。
論文 参考訳(メタデータ) (2023-07-12T16:35:41Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
ラベルフリップ雑音を持つ2層ReLU畳み込みニューラルネットワークを学習するためのアルゴリズム依存型リスクバウンダリを確立する。
緩やかな条件下では、勾配降下によってトレーニングされたニューラルネットワークは、ほぼゼロに近いトレーニング損失とベイズ最適試験リスクを達成できることを示す。
論文 参考訳(メタデータ) (2023-03-07T18:59:38Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Imbedding Deep Neural Networks [0.0]
ニューラルODEのような連続深度ニューラルネットワークは、非線形ベクトル値の最適制御問題の観点から、残留ニューラルネットワークの理解を再燃させた。
本稿では,ネットワークの深さを基本変数とする新しい手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T22:00:41Z) - Building Compact and Robust Deep Neural Networks with Toeplitz Matrices [93.05076144491146]
この論文は、コンパクトで、訓練が容易で、信頼性があり、敵の例に対して堅牢なニューラルネットワークを訓練する問題に焦点を当てている。
Toeplitzファミリーの構造化行列の特性を利用して、コンパクトでセキュアなニューラルネットワークを構築する。
論文 参考訳(メタデータ) (2021-09-02T13:58:12Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
本研究では,探索学習と表現学習の両方が重要な役割を果たす課題を解決するために,ニューラルネットワークの帯域について検討する。
破滅的な忘れ込みに対して耐性があり、完全にオンラインである可能性の高いマッチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-07T14:19:07Z) - Theoretical Analysis of the Advantage of Deepening Neural Networks [0.0]
ディープニューラルネットワークによって計算可能な関数の表現性を知ることが重要である。
この2つの基準により,深層ニューラルネットワークの表現性を向上させる上で,各層におけるユニットの増加よりも,レイヤの増加の方が効果的であることを示す。
論文 参考訳(メタデータ) (2020-09-24T04:10:50Z) - A Deep Conditioning Treatment of Neural Networks [37.192369308257504]
本研究では,入力データの特定のカーネル行列の条件付けを改善することにより,ニューラルネットワークのトレーニング性を向上させることを示す。
ニューラルネットワークの上位層のみのトレーニングと、ニューラルネットワークのタンジェントカーネルを通じてすべてのレイヤをトレーニングするための学習を行うためのバージョンを提供しています。
論文 参考訳(メタデータ) (2020-02-04T20:21:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。