A survey of synthetic data augmentation methods in computer vision
- URL: http://arxiv.org/abs/2403.10075v2
- Date: Mon, 18 Mar 2024 01:16:04 GMT
- Title: A survey of synthetic data augmentation methods in computer vision
- Authors: Alhassan Mumuni, Fuseini Mumuni, Nana Kobina Gerrar,
- Abstract summary: This paper presents an extensive review of synthetic data augmentation techniques.
We focus on the important data generation and augmentation techniques, general scope of application and specific use-cases.
We provide a summary of common synthetic datasets for training computer vision models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The standard approach to tackling computer vision problems is to train deep convolutional neural network (CNN) models using large-scale image datasets which are representative of the target task. However, in many scenarios, it is often challenging to obtain sufficient image data for the target task. Data augmentation is a way to mitigate this challenge. A common practice is to explicitly transform existing images in desired ways so as to create the required volume and variability of training data necessary to achieve good generalization performance. In situations where data for the target domain is not accessible, a viable workaround is to synthesize training data from scratch--i.e., synthetic data augmentation. This paper presents an extensive review of synthetic data augmentation techniques. It covers data synthesis approaches based on realistic 3D graphics modeling, neural style transfer (NST), differential neural rendering, and generative artificial intelligence (AI) techniques such as generative adversarial networks (GANs) and variational autoencoders (VAEs). For each of these classes of methods, we focus on the important data generation and augmentation techniques, general scope of application and specific use-cases, as well as existing limitations and possible workarounds. Additionally, we provide a summary of common synthetic datasets for training computer vision models, highlighting the main features, application domains and supported tasks. Finally, we discuss the effectiveness of synthetic data augmentation methods. Since this is the first paper to explore synthetic data augmentation methods in great detail, we are hoping to equip readers with the necessary background information and in-depth knowledge of existing methods and their attendant issues.
Related papers
- Analysis of Classifier Training on Synthetic Data for Cross-Domain Datasets [4.696575161583618]
This study focuses on camera-based traffic sign recognition applications for advanced driver assistance systems and autonomous driving.
The proposed augmentation pipeline of synthetic datasets includes novel augmentation processes such as structured shadows and gaussian specular highlights.
Experiments showed that a synthetic image-based approach outperforms in most cases real image-based training when applied to cross-domain test datasets.
arXiv Detail & Related papers (2024-10-30T07:11:41Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
We introduce a new dataset called Robot Control Gestures (RoCoG-v2)
The dataset is composed of both real and synthetic videos from seven gesture classes.
We present results using state-of-the-art action recognition and domain adaptation algorithms.
arXiv Detail & Related papers (2023-03-17T23:23:55Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
Deep learning in computer vision has achieved great success with the price of large-scale labeled training data.
The uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist.
To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization.
arXiv Detail & Related papers (2023-03-16T09:03:52Z) - Advanced Data Augmentation Approaches: A Comprehensive Survey and Future
directions [57.30984060215482]
We provide a background of data augmentation, a novel and comprehensive taxonomy of reviewed data augmentation techniques, and the strengths and weaknesses (wherever possible) of each technique.
We also provide comprehensive results of the data augmentation effect on three popular computer vision tasks, such as image classification, object detection and semantic segmentation.
arXiv Detail & Related papers (2023-01-07T11:37:32Z) - Synthetic Data for Object Classification in Industrial Applications [53.180678723280145]
In object classification, capturing a large number of images per object and in different conditions is not always possible.
This work explores the creation of artificial images using a game engine to cope with limited data in the training dataset.
arXiv Detail & Related papers (2022-12-09T11:43:04Z) - Transformer Networks for Data Augmentation of Human Physical Activity
Recognition [61.303828551910634]
State of the art models like Recurrent Generative Adrial Networks (RGAN) are used to generate realistic synthetic data.
In this paper, transformer based generative adversarial networks which have global attention on data, are compared on PAMAP2 and Real World Human Activity Recognition data sets with RGAN.
arXiv Detail & Related papers (2021-09-02T16:47:29Z) - Efficient Realistic Data Generation Framework leveraging Deep
Learning-based Human Digitization [0.0]
The proposed method takes as input real background images and populates them with human figures in various poses.
A benchmarking and evaluation in the corresponding tasks shows that synthetic data can be effectively used as a supplement to real data.
arXiv Detail & Related papers (2021-06-28T08:07:31Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
We present a novel automatic data augmentation model, which approximates the distribution of the input data and samples new data from this distribution.
Our results show that the augmentation strategy is fast to train and can improve classification accuracy for both neural networks and state-of-the-art methods.
arXiv Detail & Related papers (2021-05-27T11:07:09Z) - Multi-Spectral Image Synthesis for Crop/Weed Segmentation in Precision
Farming [3.4788711710826083]
We propose an alternative solution with respect to the common data augmentation methods, applying it to the problem of crop/weed segmentation in precision farming.
We create semi-artificial samples by replacing the most relevant object classes (i.e., crop and weeds) with their synthesized counterparts.
In addition to RGB data, we take into account also near-infrared (NIR) information, generating four channel multi-spectral synthetic images.
arXiv Detail & Related papers (2020-09-12T08:49:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.