論文の概要: Optimal Target Shape for LiDAR Pose Estimation
- arxiv url: http://arxiv.org/abs/2109.01181v1
- Date: Thu, 2 Sep 2021 19:18:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-06 13:54:09.327084
- Title: Optimal Target Shape for LiDAR Pose Estimation
- Title(参考訳): LiDARポーズ推定のための最適ターゲット形状
- Authors: Jiunn-Kai Huang, William Clark, and Jessy W. Grizzle
- Abstract要約: ターゲットは、乱雑な環境やテクスチャのない環境でのオブジェクト追跡のような問題に不可欠である。
対称形状は、スパースセンサーデータを使用する際に曖昧さを生じさせる。
本稿では,LiDAR点雲のポーズあいまいさを除去するためにターゲット形状を最適化するという概念を紹介する。
- 参考スコア(独自算出の注目度): 1.9048510647598205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Targets are essential in problems such as object tracking in cluttered or
textureless environments, camera (and multi-sensor) calibration tasks, and
simultaneous localization and mapping (SLAM). Target shapes for these tasks
typically are symmetric (square, rectangular, or circular) and work well for
structured, dense sensor data such as pixel arrays (i.e., image). However,
symmetric shapes lead to pose ambiguity when using sparse sensor data such as
LiDAR point clouds and suffer from the quantization uncertainty of the LiDAR.
This paper introduces the concept of optimizing target shape to remove pose
ambiguity for LiDAR point clouds. A target is designed to induce large
gradients at edge points under rotation and translation relative to the LiDAR
to ameliorate the quantization uncertainty associated with point cloud
sparseness. Moreover, given a target shape, we present a means that leverages
the target's geometry to estimate the target's vertices while globally
estimating the pose. Both the simulation and the experimental results (verified
by a motion capture system) confirm that by using the optimal shape and the
global solver, we achieve centimeter error in translation and a few degrees in
rotation even when a partially illuminated target is placed 30 meters away. All
the implementations and datasets are available at
https://github.com/UMich-BipedLab/optimal_shape_global_pose_estimation.
- Abstract(参考訳): ターゲットは、乱雑な環境や無テクスチャ環境での物体追跡、カメラ(およびマルチセンサー)キャリブレーションタスク、同時局所化とマッピング(SLAM)といった問題に不可欠である。
これらのタスクのターゲット形状は対称(四角形、長方形、円形)であり、ピクセルアレイ(画像)のような構造化された密度の高いセンサーデータに対してうまく機能する。
しかし、対称形状は、LiDAR点雲のようなスパースセンサーデータを使用することであいまいになり、LiDARの量子化の不確実性に悩まされる。
本稿では,LiDAR点雲のポーズあいまいさを除去するためにターゲット形状を最適化するという概念を紹介する。
ターゲットは、LiDARに対して回転・翻訳中のエッジポイントにおける大きな勾配を誘導し、点雲スパースネスに関連する量子化の不確実性を改善するように設計されている。
さらに,対象形状を与えられた場合,対象の形状を利用して対象の頂点を推定し,そのポーズをグローバルに推定する手法を提案する。
シミュレーションと実験結果(モーションキャプチャシステムによって検証された)は、最適形状と大域的解法を用いて、部分的に照らされた目標が30メートル離れた場合でも、翻訳におけるセンチメートル誤差と回転数度を達成することを確認している。
すべての実装とデータセットはhttps://github.com/UMich-BipedLab/optimal_shape_global_pose_estimationで公開されている。
関連論文リスト
- Gaussian Splatting with Localized Points Management [52.009874685460694]
局所的点管理(LPM)は、点加算と幾何校正の双方の最も高い需要において、これらの誤り貢献ゾーンを特定することができる。
LPMは特定ゾーンに点密度を適用し、これらの領域の前に位置する点の不透明度をリセットし、不条件点を補正する新たな機会を創出する。
特に、LPMはバニラ3DGSとSpaceTimeGSの両方を改善して、リアルタイム速度を維持しながら最先端のレンダリング品質を実現している。
論文 参考訳(メタデータ) (2024-06-06T16:55:07Z) - Robust 3D Tracking with Quality-Aware Shape Completion [67.9748164949519]
そこで本研究では,高密度および完全点の雲からなる合成対象表現について,ロバストな3次元追跡のための形状完備化により正確に表現する。
具体的には, 形状が整ったボキセル化3次元追跡フレームワークを設計し, ノイズのある歴史的予測の悪影響を軽減するために, 品質に配慮した形状完備化機構を提案する。
論文 参考訳(メタデータ) (2023-12-17T04:50:24Z) - Real-Time Simultaneous Localization and Mapping with LiDAR intensity [9.374695605941627]
実時間LiDAR強調画像を用いた同時位置推定とマッピング手法を提案する。
提案手法は高精度でリアルタイムに動作可能であり,照度変化,低テクスチャ,非構造化環境でも有効である。
論文 参考訳(メタデータ) (2023-01-23T03:59:48Z) - Generative Category-Level Shape and Pose Estimation with Semantic
Primitives [27.692997522812615]
本稿では,1枚のRGB-D画像からカテゴリレベルのオブジェクト形状とポーズ推定を行う新しいフレームワークを提案する。
カテゴリ内変動に対処するために、様々な形状を統一された潜在空間にエンコードするセマンティックプリミティブ表現を採用する。
提案手法は,実世界のデータセットにおいて,SOTAのポーズ推定性能とより優れた一般化を実現する。
論文 参考訳(メタデータ) (2022-10-03T17:51:54Z) - RBP-Pose: Residual Bounding Box Projection for Category-Level Pose
Estimation [103.74918834553247]
カテゴリーレベルのオブジェクトポーズ推定は、既知のカテゴリの集合からの任意のオブジェクトの3次元メートル法サイズだけでなく、6次元のポーズを予測することを目的としている。
近年の手法では, 観測された点雲を標準空間にマッピングし, 梅山アルゴリズムを用いてポーズとサイズを復元する手法が提案されている。
本稿では,オブジェクトのポーズと残差ベクトルを共同で予測する,幾何学誘導型残差オブジェクト境界ボックス投影ネットワーク RBP-Pose を提案する。
論文 参考訳(メタデータ) (2022-07-30T14:45:20Z) - Efficient 3D Deep LiDAR Odometry [16.388259779644553]
PWCLO-Netという名前の効率的な3Dポイント・クラウド・ラーニング・アーキテクチャが最初に提案される。
アーキテクチャ全体は、コストボリュームとマスクの適応的な学習を実現するために、徹底的にエンドツーエンドに最適化されています。
論文 参考訳(メタデータ) (2021-11-03T11:09:49Z) - Category-Level Metric Scale Object Shape and Pose Estimation [73.92460712829188]
本稿では,測度スケールの形状と1枚のRGB画像からのポーズを共同で推定するフレームワークを提案する。
カテゴリーレベルのオブジェクトのポーズと形状を評価するために,合成と実世界の両方のデータセット上で本手法の有効性を検証した。
論文 参考訳(メタデータ) (2021-09-01T12:16:46Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
本稿では,学習座標表現を容易にするために,PCT(Em Progressive Coordinate Transforms)と呼ばれる,新しい軽量なアプローチを提案する。
本稿では,学習座標表現を容易にするために,PCT(Em Progressive Coordinate Transforms)と呼ばれる,新しい軽量なアプローチを提案する。
論文 参考訳(メタデータ) (2021-08-12T15:22:33Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
本稿では、この局所最適問題を解くために、回転回帰のための離散連続的な新しい定式化を提案する。
我々はSO(3)の回転アンカーを均一にサンプリングし、各アンカーから目標への制約付き偏差を予測し、最適な予測を選択するための不確実性スコアを出力する。
LINEMOD と YCB-Video の2つのベンチマーク実験により,提案手法が最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-02-29T06:24:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。