論文の概要: A Context-Aware Hierarchical BERT Fusion Network for Multi-turn Dialog
Act Detection
- arxiv url: http://arxiv.org/abs/2109.01267v1
- Date: Fri, 3 Sep 2021 02:00:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-06 21:33:09.906278
- Title: A Context-Aware Hierarchical BERT Fusion Network for Multi-turn Dialog
Act Detection
- Title(参考訳): マルチターン対話行為検出のためのコンテキスト対応階層型BERT融合ネットワーク
- Authors: Ting-Wei Wu, Ruolin Su, Biing-Hwang Juang
- Abstract要約: CaBERT-SLUはコンテキスト対応階層型BERT融合ネットワーク(CaBERT-SLU)である
提案手法は,2つの複雑なマルチターン対話データセットにおいて,最新技術(SOTA)のパフォーマンスに到達する。
- 参考スコア(独自算出の注目度): 6.361198391681688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of interactive dialog systems is usually associated with the
quality of the spoken language understanding (SLU) task, which mainly
identifies the corresponding dialog acts and slot values in each turn. By
treating utterances in isolation, most SLU systems often overlook the semantic
context in which a dialog act is expected. The act dependency between turns is
non-trivial and yet critical to the identification of the correct semantic
representations. Previous works with limited context awareness have exposed the
inadequacy of dealing with complexity in multiproned user intents, which are
subject to spontaneous change during turn transitions. In this work, we propose
to enhance SLU in multi-turn dialogs, employing a context-aware hierarchical
BERT fusion Network (CaBERT-SLU) to not only discern context information within
a dialog but also jointly identify multiple dialog acts and slots in each
utterance. Experimental results show that our approach reaches new
state-of-the-art (SOTA) performances in two complicated multi-turn dialogue
datasets with considerable improvements compared with previous methods, which
only consider single utterances for multiple intents and slot filling.
- Abstract(参考訳): 対話型ダイアログシステムの成功は、通常音声言語理解タスク(SLU)の質と関連付けられ、それぞれのターンの対応するダイアログの動作とスロット値を主に識別する。
発話を単独で処理することで、ほとんどのSLUシステムは、ダイアログの振る舞いが期待される意味的コンテキストを見落としてしまう。
ターン間のact依存性は自明ではないが、正しい意味表現の識別には不可欠である。
コンテキスト認識が限定された以前の研究は、ターン遷移中に自然に変化する多目的ユーザ意図の複雑さに対処する不適切さを露呈している。
本研究では,マルチターンダイアログにおけるSLUを強化し,コンテキスト認識型階層型BERT融合ネットワーク(CaBERT-SLU)を用いて,対話内のコンテキスト情報を識別するだけでなく,発話毎に複数のダイアログやスロットを共同で識別する手法を提案する。
実験の結果,提案手法は2つの複雑なマルチターン対話データセットにおいて新たな最先端(sota)性能に到達し,複数の意図とスロット充填のための単一発話のみを考慮した従来の手法に比べて相当な改善が得られた。
関連論文リスト
- DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever [83.33209603041013]
マルチモーダルダイアログ検索のためのパラメータ効率の高いプロンプトチューニング手法であるDialCLIPを提案する。
提案手法では,事前学習された視覚言語モデルCLIP内のプロンプトに抽出された文脈特徴を学習するためのマルチモーダルコンテキスト生成手法を提案する。
様々なタイプの検索を容易にするために,CLIP出力からマルチモーダル表現空間へのマッピングを学習するために,複数の専門家を設計する。
論文 参考訳(メタデータ) (2024-01-02T07:40:12Z) - Are cascade dialogue state tracking models speaking out of turn in
spoken dialogues? [1.786898113631979]
本稿では,対話状態追跡のような複雑な環境下でのアートシステムのエラーを包括的に解析する。
音声MultiWozに基づいて、音声対話システムとチャットベースの対話システムとのギャップを埋めるためには、非カテゴリースロットの値の誤差に対処することが不可欠である。
論文 参考訳(メタデータ) (2023-11-03T08:45:22Z) - Multi-User MultiWOZ: Task-Oriented Dialogues among Multiple Users [51.34484827552774]
マルチユーザMulti-User MultiWOZデータセットを2つのユーザと1つのエージェント間のタスク指向対話としてリリースする。
これらの対話は、タスク指向のシナリオにおける協調的な意思決定の興味深いダイナミクスを反映している。
本稿では,複数ユーザ間のタスク指向のチャットを簡潔なタスク指向のクエリとして書き換える,マルチユーザコンテキストクエリ書き換えの新しいタスクを提案する。
論文 参考訳(メタデータ) (2023-10-31T14:12:07Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - Beyond the Granularity: Multi-Perspective Dialogue Collaborative
Selection for Dialogue State Tracking [18.172993687706708]
対話状態追跡においては、対話履歴は重要な材料であり、その利用法は異なるモデルによって異なる。
状態更新のために各スロットに対応する対話内容を動的に選択するDiCoS-DSTを提案する。
提案手法は,MultiWOZ 2.1およびMultiWOZ 2.2上での最先端性能を実現し,複数の主流ベンチマークデータセット上での優れた性能を実現する。
論文 参考訳(メタデータ) (2022-05-20T10:08:45Z) - HybriDialogue: An Information-Seeking Dialogue Dataset Grounded on
Tabular and Textual Data [87.67278915655712]
我々は、ウィキペディアのテキストとテーブルの両方を基盤とした、クラウドソーシングされた自然な会話からなる新しい対話データセットHybriDialogueを提示する。
これらの会話は、複雑なマルチホップ質問をシンプルで現実的なマルチターン対話に分解することで生成される。
論文 参考訳(メタデータ) (2022-04-28T00:52:16Z) - Back to the Future: Bidirectional Information Decoupling Network for
Multi-turn Dialogue Modeling [80.51094098799736]
ユニバーサル対話エンコーダとして双方向情報デカップリングネットワーク(BiDeN)を提案する。
BiDeNは過去と将来の両方のコンテキストを明示的に取り入れており、幅広い対話関連のタスクに一般化することができる。
異なる下流タスクのデータセットに対する実験結果は、我々のBiDeNの普遍性と有効性を示している。
論文 参考訳(メタデータ) (2022-04-18T03:51:46Z) - Utterance Rewriting with Contrastive Learning in Multi-turn Dialogue [22.103162555263143]
比較学習とマルチタスク学習を導入し、問題を共同でモデル化する。
提案手法は,複数の公開データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-22T10:13:27Z) - Knowledge Augmented BERT Mutual Network in Multi-turn Spoken Dialogues [6.4144180888492075]
本稿では,2つのSLUタスク間の対話コンテキストを相互に活用するために,BERTベースのジョイントモデルとナレッジアテンションモジュールを備えることを提案する。
さらにゲーティング機構を利用して、無関係な知識三重項をフィルタリングし、気を散らす理解を回避する。
2つの複雑なマルチターン対話データセットの実験的結果は、2つのSLUタスクをフィルター付き知識と対話コンテキストで相互にモデル化することで実証された。
論文 参考訳(メタデータ) (2022-02-23T04:03:35Z) - Integrating Dialog History into End-to-End Spoken Language Understanding
Systems [37.08876551722831]
対話履歴の重要性と、それをエンドツーエンドの音声言語理解システムに効果的に組み込む方法について検討する。
音声音声を処理しながら,提案したRNNトランスデューサ(RNN-T)に基づくSLUモデルでは,そのダイアログ履歴を復号化文字とSLUラベルの形式でアクセスすることができる。
我々は最近リリースされた音声対話データセットであるHarperValleyBank corpusに対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-08-18T22:24:11Z) - Masking Orchestration: Multi-task Pretraining for Multi-role Dialogue
Representation Learning [50.5572111079898]
マルチロール対話理解は、質問応答、行動分類、対話要約など、幅広い多様なタスクを含む。
対話コーパスは豊富に利用可能であるが、特定の学習タスクのためのラベル付きデータは非常に不足しており、高価である。
本研究では,教師なし事前学習タスクを用いた対話文脈表現学習について検討する。
論文 参考訳(メタデータ) (2020-02-27T04:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。