論文の概要: Indexing Context-Sensitive Reachability
- arxiv url: http://arxiv.org/abs/2109.01321v1
- Date: Fri, 3 Sep 2021 05:41:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-06 13:56:15.047666
- Title: Indexing Context-Sensitive Reachability
- Title(参考訳): インデクシングコンテキスト感度の到達可能性
- Authors: Qingkai Shi, Yongchao Wang, Charles Zhang
- Abstract要約: textscFlareは、文脈依存型データフロー解析のための従来のグラフ到達可能性問題から従来のグラフ到達性問題への還元である。
我々は,C/C++プログラムの文脈感性エイリアス解析と文脈感性情報フロー解析に適用した。
- 参考スコア(独自算出の注目度): 16.114012813668932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many context-sensitive data flow analyses can be formulated as a variant of
the all-pairs Dyck-CFL reachability problem, which, in general, is of sub-cubic
time complexity and quadratic space complexity. Such high complexity
significantly limits the scalability of context-sensitive data flow analysis
and is not affordable for analyzing large-scale software. This paper presents
\textsc{Flare}, a reduction from the CFL reachability problem to the
conventional graph reachability problem for context-sensitive data flow
analysis. This reduction allows us to benefit from recent advances in
reachability indexing schemes, which often consume almost linear space for
answering reachability queries in almost constant time. We have applied our
reduction to a context-sensitive alias analysis and a context-sensitive
information-flow analysis for C/C++ programs. Experimental results on standard
benchmarks and open-source software demonstrate that we can achieve orders of
magnitude speedup at the cost of only moderate space to store the indexes. The
implementation of our approach is publicly available.
- Abstract(参考訳): 多くの文脈に敏感なデータフロー解析は、全てのペア dyck-cfl 到達可能性問題の変種として定式化することができる。
このような高い複雑さは、コンテキストに敏感なデータフロー分析のスケーラビリティを著しく制限し、大規模なソフトウェアを分析するには手頃ではない。
本稿では,コンテキストに敏感なデータフロー解析のための,cfl到達可能性問題から従来のグラフ到達可能性問題への還元である \textsc{flare} を提案する。
この削減により、ほぼ一定時間でリーチビリティクエリに答えるために、ほぼ線形空間を消費する、リーチビリティインデクシングスキームの最近の進歩の恩恵を受けることができる。
我々は,C/C++プログラムの文脈感性エイリアス解析と文脈感性情報フロー解析に適用した。
標準ベンチマークとオープンソースソフトウェアによる実験結果から、インデックスを格納するための適度なスペースのみのコストで、桁違いのスピードアップを達成できることが示されている。
私たちのアプローチの実装は公開されています。
関連論文リスト
- Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) は、大規模言語モデル(LLM)の限界を軽減し、ドメイン固有の質問に答える手段として広く採用されている。
これまでの研究は主に、取得したデータチャンクの精度と品質を改善し、生成パイプライン全体のパフォーマンスを向上させることに重点を置いてきた。
オープンドメイン質問応答における無関係情報検索の効果について検討し,LLM出力の品質に対する顕著な有害な影響を明らかにする。
論文 参考訳(メタデータ) (2024-11-25T06:48:38Z) - Squeezed Attention: Accelerating Long Context Length LLM Inference [64.11145320159126]
本稿では,入力プロンプトの大部分を固定したLLMアプリケーションを高速化する機構として,Squeezed Attentionを提案する。
K-meansクラスタリングをオフラインで使用して、セマンティックな類似性に基づいて、固定されたコンテキストのキーをグループ化し、各クラスタを単一のセントロイド値で表現します。
そして、固定された文脈から重要なキーのみを用いて正確な注意を計算し、帯域幅と計算コストを削減する。
論文 参考訳(メタデータ) (2024-11-14T18:54:19Z) - QUITO: Accelerating Long-Context Reasoning through Query-Guided Context Compression [37.08536175557748]
本稿では,新しいQuery-gUIded aTtention cOmpression (QUITO)法を提案する。
具体的には,質問に対する文脈の注意分布を計算するためにトリガートークンを用いる。
本研究では,2つの広く利用されているデータセットであるNaturalQuestionsとASQAを用いてQUITOを評価する。
論文 参考訳(メタデータ) (2024-08-01T04:28:38Z) - KV Cache Compression, But What Must We Give in Return? A Comprehensive Benchmark of Long Context Capable Approaches [52.02764371205856]
長期の文脈能力は、大規模言語モデル(LLM)にとって重要な能力である
この研究は、現在の手法の分類を提供し、長いコンテキストタスクの7つのカテゴリにまたがる10以上の最先端のアプローチを評価する。
論文 参考訳(メタデータ) (2024-07-01T17:59:47Z) - Scalable Sparse Regression for Model Discovery: The Fast Lane to Insight [0.0]
シンボリックライブラリに適用されたスパース回帰は、データから直接方程式を学習する強力なツールとして急速に現れてきた。
最近提案された網羅的探索を拡張した汎用モデルスパース回帰アルゴリズムを提案する。
これは、小さな係数に対する非依存的な感度を維持することを目的としており、大きなシンボルライブラリーにとって妥当な計算コストである。
論文 参考訳(メタデータ) (2024-05-14T18:09:43Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Salesforce CausalAI Library: A Fast and Scalable Framework for Causal
Analysis of Time Series and Tabular Data [76.85310770921876]
観測データを用いた因果解析のためのオープンソースライブラリであるSalesforce CausalAI Libraryを紹介した。
このライブラリの目標は、因果関係の領域における様々な問題に対して、迅速かつ柔軟なソリューションを提供することである。
論文 参考訳(メタデータ) (2023-01-25T22:42:48Z) - Computing unsatisfiable cores for LTLf specifications [3.251765107970636]
有限トレース上の線形時間時間時間論理(LTLf)は、多くのアプリケーション領域で仕様を作成するためのデファクト標準になりつつある。
満足度チェックのための最先端手法を用いて、不満足なコアを抽出する4つのアルゴリズムを提案する。
結果は、異なるアルゴリズムやツールの実現可能性、有効性、相補性を示している。
論文 参考訳(メタデータ) (2022-03-09T16:08:43Z) - A general sample complexity analysis of vanilla policy gradient [101.16957584135767]
政策勾配(PG)は、最も一般的な強化学習(RL)問題の1つである。
PG軌道の「バニラ」理論的理解は、RL問題を解く最も一般的な方法の1つである。
論文 参考訳(メタデータ) (2021-07-23T19:38:17Z) - A Complementarity Analysis of the COCO Benchmark Problems and
Artificially Generated Problems [0.0]
本稿では,このような単目的連続問題生成手法をCOCOベンチマーク問題セットと比較検討する。
このような表現により、可視化と相関解析技術を適用して、問題間の関係をさらに探求できることを示す。
論文 参考訳(メタデータ) (2021-04-27T09:18:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。