Integration of Data and Theory for Accelerated Derivable Symbolic
Discovery
- URL: http://arxiv.org/abs/2109.01634v1
- Date: Fri, 3 Sep 2021 17:19:17 GMT
- Title: Integration of Data and Theory for Accelerated Derivable Symbolic
Discovery
- Authors: Cristina Cornelio, Sanjeeb Dash, Vernon Austel, Tyler Josephson, Joao
Goncalves, Kenneth Clarkson, Nimrod Megiddo, Bachir El Khadir, Lior Horesh
- Abstract summary: We develop a methodology combining automated theorem proving with symbolic regression, enabling principled derivations of laws of nature.
We demonstrate this for Kepler's third law, Einstein's relativistic time dilation, and Langmuir's theory of adsorbing.
The combination of logical reasoning with machine learning provides generalizable insights into key aspects of the natural phenomena.
- Score: 3.7521856498259627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scientists have long aimed to discover meaningful equations which accurately
describe data. Machine learning algorithms automate construction of accurate
data-driven models, but ensuring that these are consistent with existing
knowledge is a challenge. We developed a methodology combining automated
theorem proving with symbolic regression, enabling principled derivations of
laws of nature. We demonstrate this for Kepler's third law, Einstein's
relativistic time dilation, and Langmuir's theory of adsorption, in each case,
automatically connecting experimental data with background theory. The
combination of logical reasoning with machine learning provides generalizable
insights into key aspects of the natural phenomena.
Related papers
- Discovering symbolic expressions with parallelized tree search [59.92040079807524]
Symbolic regression plays a crucial role in scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data.
Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity.
We introduce a parallelized tree search (PTS) model to efficiently distill generic mathematical expressions from limited data.
arXiv Detail & Related papers (2024-07-05T10:41:15Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
Learning concepts from natural high-dimensional data holds potential in building human-aligned and interpretable machine learning models.
We formalize concepts as discrete latent causal variables that are related via a hierarchical causal model.
We substantiate our theoretical claims with synthetic data experiments.
arXiv Detail & Related papers (2024-06-01T18:01:03Z) - Stochastic parameter reduced-order model based on hybrid machine learning approaches [4.378407481656902]
This paper constructs a Convolutional Autoencoder-Reservoir Computing-Normalizing Flow algorithm framework.
The framework is used to characterize the evolution of latent state variables.
In this way, a data-driven reduced-order model is constructed to describe the complex system and its dynamic behavior.
arXiv Detail & Related papers (2024-03-24T06:52:37Z) - Nature-Inspired Local Propagation [68.63385571967267]
Natural learning processes rely on mechanisms where data representation and learning are intertwined in such a way as to respect locality.
We show that the algorithmic interpretation of the derived "laws of learning", which takes the structure of Hamiltonian equations, reduces to Backpropagation when the speed of propagation goes to infinity.
This opens the doors to machine learning based on full on-line information that are based the replacement of Backpropagation with the proposed local algorithm.
arXiv Detail & Related papers (2024-02-04T21:43:37Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Towards true discovery of the differential equations [57.089645396998506]
Differential equation discovery is a machine learning subfield used to develop interpretable models.
This paper explores the prerequisites and tools for independent equation discovery without expert input.
arXiv Detail & Related papers (2023-08-09T12:03:12Z) - Constructing Custom Thermodynamics Using Deep Learning [10.008895786910195]
One of the most exciting applications of artificial intelligence (AI) is automated scientific discovery based on previously amassed data.
Here we develop a platform based on a generalized Onsager principle to learn macroscopic descriptions of arbitrary dissipative systems.
We demonstrate its effectiveness by studying theoretically and experimentally validating the stretching of long polymer chains in an externally applied field.
arXiv Detail & Related papers (2023-08-08T08:19:43Z) - Learning Transport Processes with Machine Intelligence [0.0]
We present a machine learning based approach to address the study of transport processes.
Our model is capable of learning latent representations of the transport process substantially closer to the ground truth than expected.
arXiv Detail & Related papers (2021-09-27T14:49:22Z) - A Scaling Law for Synthetic-to-Real Transfer: A Measure of Pre-Training [52.93808218720784]
Synthetic-to-real transfer learning is a framework in which we pre-train models with synthetically generated images and ground-truth annotations for real tasks.
Although synthetic images overcome the data scarcity issue, it remains unclear how the fine-tuning performance scales with pre-trained models.
We observe a simple and general scaling law that consistently describes learning curves in various tasks, models, and complexities of synthesized pre-training data.
arXiv Detail & Related papers (2021-08-25T02:29:28Z) - Random thoughts about Complexity, Data and Models [0.0]
Data Science and Machine learning have been growing strong for the past decade.
We investigate the subtle relation between "data and models"
Key issue for appraisal of relation between algorithmic complexity and algorithmic learning is to do with concepts of compressibility, determinism and predictability.
arXiv Detail & Related papers (2020-04-16T14:27:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.