Learning Transport Processes with Machine Intelligence
- URL: http://arxiv.org/abs/2109.13096v1
- Date: Mon, 27 Sep 2021 14:49:22 GMT
- Title: Learning Transport Processes with Machine Intelligence
- Authors: Francesco Miniati, Gianluca Gregori
- Abstract summary: We present a machine learning based approach to address the study of transport processes.
Our model is capable of learning latent representations of the transport process substantially closer to the ground truth than expected.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a machine learning based approach to address the study of
transport processes, ubiquitous in continuous mechanics, with particular
attention to those phenomena ruled by complex micro-physics, impractical to
theoretical investigation, yet exhibiting emergent behavior describable by a
closed mathematical expression. Our machine learning model, built using simple
components and following a few well established practices, is capable of
learning latent representations of the transport process substantially closer
to the ground truth than expected from the nominal error characterising the
data, leading to sound generalisation properties. This is demonstrated through
an idealized study of the long standing problem of heat flux suppression under
conditions relevant for fusion and cosmic plasmas. A simple analysis shows that
the result applies beyond those case specific assumptions and that, in
particular, the accuracy of the learned representation is controllable through
knowledge of the data quality (error properties) and a suitable choice of the
dataset size. While the learned representation can be used as a plug-in for
numerical modeling purposes, it can also be leveraged with the above error
analysis to obtain reliable mathematical expressions describing the transport
mechanism and of great theoretical value.
Related papers
- Model-free quantification of completeness, uncertainties, and outliers in atomistic machine learning using information theory [4.59916193837551]
atomistic machine learning (ML) often relies on unsupervised learning or model predictions to analyze information contents.
Here, we introduce a theoretical framework that provides a rigorous, model-free tool to quantify information contents in atomistic simulations.
arXiv Detail & Related papers (2024-04-18T17:50:15Z) - Electronic excited states from physically-constrained machine learning [0.0]
We present an integrated modeling approach, in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation.
The resulting model can make predictions for molecules that are much larger and more complex than those that it is trained on.
arXiv Detail & Related papers (2023-11-01T20:49:59Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Generative structured normalizing flow Gaussian processes applied to
spectroscopic data [4.0773490083614075]
In the physical sciences, limited training data may not adequately characterize future observed data.
It is critical that models adequately indicate uncertainty, particularly when they may be asked to extrapolate.
We demonstrate the methodology on laser-induced breakdown spectroscopy data from the ChemCam instrument onboard the Mars rover Curiosity.
arXiv Detail & Related papers (2022-12-14T23:57:46Z) - Modular machine learning-based elastoplasticity: generalization in the
context of limited data [0.0]
We discuss a hybrid framework that can work on a variable amount of data by relying on the modularity of the elastoplasticity formulation.
The discovered material models are found to not only interpolate well but also allow for accurate extrapolation in a thermodynamically consistent manner far outside the domain of the training data.
arXiv Detail & Related papers (2022-10-15T17:35:23Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - Analytical Modelling of Exoplanet Transit Specroscopy with Dimensional
Analysis and Symbolic Regression [68.8204255655161]
The deep learning revolution has opened the door for deriving such analytical results directly with a computer algorithm fitting to the data.
We successfully demonstrate the use of symbolic regression on synthetic data for the transit radii of generic hot Jupiter exoplanets.
As a preprocessing step, we use dimensional analysis to identify the relevant dimensionless combinations of variables.
arXiv Detail & Related papers (2021-12-22T00:52:56Z) - A Scaling Law for Synthetic-to-Real Transfer: A Measure of Pre-Training [52.93808218720784]
Synthetic-to-real transfer learning is a framework in which we pre-train models with synthetically generated images and ground-truth annotations for real tasks.
Although synthetic images overcome the data scarcity issue, it remains unclear how the fine-tuning performance scales with pre-trained models.
We observe a simple and general scaling law that consistently describes learning curves in various tasks, models, and complexities of synthesized pre-training data.
arXiv Detail & Related papers (2021-08-25T02:29:28Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
We present a framework for discovering continuum models from high fidelity molecular simulation data.
Our approach applies a neural network parameterization of governing physics in modal space.
We demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows.
arXiv Detail & Related papers (2020-09-25T01:13:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.