論文の概要: Finetuned Language Models Are Zero-Shot Learners
- arxiv url: http://arxiv.org/abs/2109.01652v1
- Date: Fri, 3 Sep 2021 17:55:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-06 14:00:34.898474
- Title: Finetuned Language Models Are Zero-Shot Learners
- Title(参考訳): 微調整言語モデルはゼロショット学習者である
- Authors: Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu,
Brian Lester, Nan Du, Andrew M. Dai, Quoc V. Le
- Abstract要約: 命令チューニングは、目に見えないタスクにおけるゼロショット性能を向上することを示す。
137Bパラメータを事前訓練した言語モデルと、自然言語の命令テンプレートを介して言語化された60以上のNLPタスクにチューニングする。
FLANと呼ばれるこの命令調整モデルについて、未知のタスクタイプで評価する。
- 参考スコア(独自算出の注目度): 67.70352207685558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores a simple method for improving the zero-shot learning
abilities of language models. We show that instruction tuning -- finetuning
language models on a collection of tasks described via instructions --
substantially boosts zero-shot performance on unseen tasks.
We take a 137B parameter pretrained language model and instruction-tune it on
over 60 NLP tasks verbalized via natural language instruction templates. We
evaluate this instruction-tuned model, which we call FLAN, on unseen task
types. FLAN substantially improves the performance of its unmodified
counterpart and surpasses zero-shot 175B GPT-3 on 19 of 25 tasks that we
evaluate. FLAN even outperforms few-shot GPT-3 by a large margin on ANLI, RTE,
BoolQ, AI2-ARC, OpenbookQA, and StoryCloze. Ablation studies reveal that number
of tasks and model scale are key components to the success of instruction
tuning.
- Abstract(参考訳): 本稿では,言語モデルのゼロショット学習能力を改善するための簡易な方法を提案する。
命令によって記述されるタスクの集合上で言語モデルを微調整する命令チューニングは、目に見えないタスクのゼロショット性能を本質的に向上させる。
137B パラメータを事前訓練した言語モデルと、自然言語の命令テンプレートによって言語化された 60 以上の NLP タスクにチューニングする。
FLANと呼ばれるこの命令調整モデルについて、未知のタスクタイプで評価する。
FLANは、修正されていないものの性能を大幅に改善し、評価した25のタスクのうち、ゼロショット175B GPT-3を上回っます。
FLANは、ANLI、RTE、BoolQ、AI2-ARC、OpenbookQA、StoryClozeなど、数発のGPT-3よりも優れている。
アブレーション研究により、タスク数とモデルスケールが命令チューニングの成功の重要な要素であることが判明した。
関連論文リスト
- Pretrained Generative Language Models as General Learning Frameworks for
Sequence-Based Tasks [0.0]
そこで本研究では,素小事前学習型生成言語モデルをシーケンスベースタスクの一般的な学習フレームワークとして利用することを提案する。
提案では,ニューラルネットワークと言語モデルをスクラッチからトレーニングする際の計算資源,スキルセット,タイムラインの課題を克服する。
125M,350M,1.3Bパラメータを事前学習した基礎言語モデルを1万から1000,000の命令例で微調整できることを実証した。
論文 参考訳(メタデータ) (2024-02-08T12:19:32Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
大規模言語モデル(LLM)は、翻訳や要約といった条件付きシーケンス生成タスクを実行することができる。
入力文の後にタスク命令の位置をシフトさせることにより,LLMの指示追従能力を向上させることを提案する。
論文 参考訳(メタデータ) (2023-08-23T12:36:57Z) - Self-Instruct: Aligning Language Models with Self-Generated Instructions [76.42871502364697]
Self-Instructは、事前訓練された言語モデルの命令フォロー機能を改善するためのフレームワークである。
私たちのパイプラインは、言語モデルから命令、入力、および出力のサンプルを生成し、その後、元のモデルを微調整するためにそれらを使用する前に、無効または類似のサンプルをフィルタします。
さらなる評価のために、新規タスクのエキスパートによる指示のセットをキュレートし、GPT3とセルフインストラクトのチューニングが既存の公開インストラクションデータセットを大きなマージンで向上することを示す。
論文 参考訳(メタデータ) (2022-12-20T18:59:19Z) - Zero-Shot Learners for Natural Language Understanding via a Unified
Multiple Choice Perspective [26.41585967095811]
ゼロショット学習は、与えられたタスクでモデルをトレーニングすることを目的としており、追加のトレーニングなしで新しい学習タスクに対処できる。
提案手法は、ゼロショット学習を複数選択タスクに変換し、FLANなどの大規模生成モデルで一般的に使用される問題を回避する。
提案手法は,いくつかのベンチマークにおいて最先端の性能を示し,自然言語推論やテキスト分類といったタスクに対して良好な結果をもたらす。
論文 参考訳(メタデータ) (2022-10-16T17:24:06Z) - Instruction Induction: From Few Examples to Natural Language Task
Descriptions [55.139554327372934]
実例に適合する自然言語命令を生成するように促すことで,言語モデルがいくつかの実演から基礎となるタスクを明示的に推論できることを示す。
InstructGPTは65.7%の人的パフォーマンスを達成するが、オリジナルのGPT-3モデルは9.8%にしか達しない。
論文 参考訳(メタデータ) (2022-05-22T09:22:37Z) - Few-shot Learning with Multilingual Language Models [66.49496434282564]
多様な言語群をカバーするバランスの取れたコーパス上で,多言語の自動回帰言語モデルを訓練する。
私たちの最大のモデルは、20以上の代表言語で数ショットの学習において、新しい最先端の技術を定めています。
本稿では,モデルがどこで成功し,失敗するかを詳細に分析し,特に言語間の文脈内学習を可能にすることを示す。
論文 参考訳(メタデータ) (2021-12-20T16:52:35Z) - ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language
Understanding and Generation [25.430130072811075]
大規模知識強化モデルの事前学習のための統合フレームワーク ERNIE 3.0 を提案する。
自動回帰ネットワークと自動エンコードネットワークを融合することで、トレーニングされたモデルを自然言語理解と生成タスクの両方に容易に適合させることができる。
我々は,テキストと大規模知識グラフからなる4TBコーパス上で,100億のパラメータでモデルを訓練した。
論文 参考訳(メタデータ) (2021-07-05T16:54:59Z) - Making Pre-trained Language Models Better Few-shot Learners [11.90626040104822]
最近のGPT-3モデルは、自然言語プロンプトといくつかのタスクデモンストレーションを入力コンテキストとして活用することで、驚くべき数ショットパフォーマンスを実現します。
これらの知見に触発されて,より実用的なシナリオで,微調整が計算効率のよい小型言語モデルを用いて,小数点学習の研究を行った。
LM-BFF - 少数の注釈付き例で、言語モデルの微調整のためのシンプルで補完的な技術のスイート - 言語モデルのより良い少数ショット微調整を提示します。
論文 参考訳(メタデータ) (2020-12-31T17:21:26Z) - Language Models are Few-Shot Learners [61.36677350504291]
言語モデルのスケールアップにより、タスクに依存しない、少数ショットのパフォーマンスが大幅に向上することを示す。
我々は、1750億のパラメータを持つ自動回帰言語モデルであるGPT-3を訓練し、その性能を数ショットでテストする。
GPT-3は、翻訳、質問応答、クローズタスクを含む多くのNLPデータセットで高いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-05-28T17:29:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。