Integrating Network Embedding and Community Outlier Detection via
Multiclass Graph Description
- URL: http://arxiv.org/abs/2007.10231v1
- Date: Mon, 20 Jul 2020 16:21:07 GMT
- Title: Integrating Network Embedding and Community Outlier Detection via
Multiclass Graph Description
- Authors: Sambaran Bandyopadhyay, Saley Vishal Vivek, M. N. Murty
- Abstract summary: We propose a novel unsupervised graph embedding approach (called DMGD) which integrates outlier and community detection with node embedding.
We show the theoretical bounds on the number of outliers detected by DMGD.
Our formulation boils down to an interesting minimax game between the outliers, community assignments and the node embedding function.
- Score: 15.679313861083239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network (or graph) embedding is the task to map the nodes of a graph to a
lower dimensional vector space, such that it preserves the graph properties and
facilitates the downstream network mining tasks. Real world networks often come
with (community) outlier nodes, which behave differently from the regular nodes
of the community. These outlier nodes can affect the embedding of the regular
nodes, if not handled carefully. In this paper, we propose a novel unsupervised
graph embedding approach (called DMGD) which integrates outlier and community
detection with node embedding. We extend the idea of deep support vector data
description to the framework of graph embedding when there are multiple
communities present in the given network, and an outlier is characterized
relative to its community. We also show the theoretical bounds on the number of
outliers detected by DMGD. Our formulation boils down to an interesting minimax
game between the outliers, community assignments and the node embedding
function. We also propose an efficient algorithm to solve this optimization
framework. Experimental results on both synthetic and real world networks show
the merit of our approach compared to state-of-the-arts.
Related papers
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRARE is a framework built upon node relative entropy and deep reinforcement learning.
An innovative node relative entropy is used to measure mutual information between node pairs.
A deep reinforcement learning-based algorithm is developed to optimize the graph topology.
arXiv Detail & Related papers (2023-12-15T11:30:18Z) - DINE: Dimensional Interpretability of Node Embeddings [3.3040172566302206]
Graph representation learning methods, such as node embeddings, are powerful approaches to map nodes into a latent vector space.
We develop new metrics that measure the global interpretability of embedding vectors.
We then introduce DINE, a novel approach that can retrofit existing node embeddings by making them more interpretable without sacrificing their task performance.
arXiv Detail & Related papers (2023-10-02T12:47:42Z) - Learning on Graphs with Out-of-Distribution Nodes [33.141867473074264]
Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs.
This work defines the problem of graph learning with out-of-distribution nodes.
We propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes.
arXiv Detail & Related papers (2023-08-13T08:10:23Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Graph Transformer GANs for Graph-Constrained House Generation [223.739067413952]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The GTGAN learns effective graph node relations in an end-to-end fashion for the challenging graph-constrained house generation task.
arXiv Detail & Related papers (2023-03-14T20:35:45Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Detecting Communities from Heterogeneous Graphs: A Context Path-based
Graph Neural Network Model [23.525079144108567]
We build a Context Path-based Graph Neural Network (CP-GNN) model.
It embeds the high-order relationship between nodes into the node embedding.
It outperforms the state-of-the-art community detection methods.
arXiv Detail & Related papers (2021-09-05T12:28:00Z) - Spectral Embedding of Graph Networks [76.27138343125985]
We introduce an unsupervised graph embedding that trades off local node similarity and connectivity, and global structure.
The embedding is based on a generalized graph Laplacian, whose eigenvectors compactly capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2020-09-30T04:59:10Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.