Automated detection of COVID-19 cases from chest X-ray images using deep
neural network and XGBoost
- URL: http://arxiv.org/abs/2109.02428v1
- Date: Fri, 3 Sep 2021 13:41:13 GMT
- Title: Automated detection of COVID-19 cases from chest X-ray images using deep
neural network and XGBoost
- Authors: Hamid Nasiri, Sharif Hasani
- Abstract summary: A novel approach to diagnosing coronavirus disease from X-ray images was proposed.
DenseNet169 deep neural network was used to extract the features of X-ray images taken from the patients' chest.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In late 2019 and after COVID-19 pandemic in the world, many researchers and
scholars have tried to provide methods for detection of COVID-19 cases.
Accordingly, this study focused on identifying COVID-19 cases from chest X-ray
images. In this paper, a novel approach to diagnosing coronavirus disease from
X-ray images was proposed. In the proposed method, DenseNet169 deep neural
network was used to extract the features of X-ray images taken from the
patients' chest and the extracted features were then given as input to the
Extreme Gradient Boosting (XGBoost) algorithm so that it could perform the
classification task. Evaluation of the proposed approach and its comparison
with the methods presented in recent years revealed that the proposed method
was more accurate and faster than the existing ones and had an acceptable
performance in detection of COVID-19 cases from X-ray images.
Related papers
- AttCDCNet: Attention-enhanced Chest Disease Classification using X-Ray Images [0.0]
We propose a novel detection model named textbfAttCDCNet for the task of X-ray image diagnosis.
The proposed model achieved an accuracy, precision and recall of 94.94%, 95.14% and 94.53%, respectively, on the COVID-19 Radiography dataset.
arXiv Detail & Related papers (2024-10-20T16:08:20Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Classification of COVID-19 in Chest X-ray Images Using Fusion of Deep
Features and LightGBM [0.0]
We propose a new technique that is faster and more accurate than the other methods reported in the literature.
The proposed method uses a combination of DenseNet169 and MobileNet Deep Neural Networks to extract the features of the patient's X-ray images.
The method achieved 98.54% and 91.11% accuracies in the two-class (COVID-19, Healthy) and multi-class (COVID-19, Healthy, Pneumonia) classification problems.
arXiv Detail & Related papers (2022-06-09T14:56:24Z) - COVIDx CXR-3: A Large-Scale, Open-Source Benchmark Dataset of Chest
X-ray Images for Computer-Aided COVID-19 Diagnostics [69.55060769611916]
The use of chest X-ray (CXR) imaging as a complementary screening strategy to RT-PCR testing is increasing.
Many visual perception models have been proposed for COVID-19 screening based on CXR imaging.
We introduce COVIDx CXR-3, a large-scale benchmark dataset of CXR images for supporting COVID-19 computer vision research.
arXiv Detail & Related papers (2022-06-08T04:39:44Z) - Diagnosis of COVID-19 Cases from Chest X-ray Images Using Deep Neural
Network and LightGBM [0.0]
The Coronavirus was detected in Wuhan, China in late 2019 and then led to a pandemic with a rapid worldwide outbreak.
In this study, an attempt was made to propose a new and efficient method for automatic diagnosis of Corona disease from X-ray images using Deep Neural Networks (DNNs)
arXiv Detail & Related papers (2022-03-27T11:01:21Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - A novel framework based on deep learning and ANOVA feature selection
method for diagnosis of COVID-19 cases from chest X-ray Images [0.0]
COVID-19 was first identified in Wuhan and quickly spread worldwide.
Most accessible method for COVID-19 identification is RT-PCR.
Compared to RT-PCR, chest CT scans and chest X-ray images provide superior results.
DenseNet169 was employed to extract features from X-ray images.
arXiv Detail & Related papers (2021-09-30T16:10:31Z) - Multi-Task Driven Explainable Diagnosis of COVID-19 using Chest X-ray
Images [61.24431480245932]
COVID-19 Multi-Task Network is an automated end-to-end network for COVID-19 screening.
We manually annotate the lung regions of 9000 frontal chest radiographs taken from ChestXray-14, CheXpert and a consolidated COVID-19 dataset.
This database will be released to the research community.
arXiv Detail & Related papers (2020-08-03T12:52:23Z) - PDCOVIDNet: A Parallel-Dilated Convolutional Neural Network Architecture
for Detecting COVID-19 from Chest X-Ray Images [1.4824891788575418]
COVID-19 pandemic continues to severely undermine the prosperity of the global health system.
The use of chest X-ray images for radiological assessment is one of the essential screening techniques.
We propose a parallel-dilated convolutional neural network based COVID-19 detection system from chest x-ray images.
arXiv Detail & Related papers (2020-07-29T12:28:16Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
This work introduces a general pre-processing step for chest x-ray input into machine learning algorithms.
A modified Y-Net architecture based on the VGG11 encoder is used to simultaneously learn geometric orientation and segmentation of radiographs.
Results were evaluated by expert clinicians, with acceptable geometry in 95.8% and annotation mask in 96.2%, compared to 27.0% and 34.9% respectively in control images.
arXiv Detail & Related papers (2020-05-08T02:16:17Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
We introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images.
To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images.
We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases.
arXiv Detail & Related papers (2020-03-22T12:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.