AttCDCNet: Attention-enhanced Chest Disease Classification using X-Ray Images
- URL: http://arxiv.org/abs/2410.15437v1
- Date: Sun, 20 Oct 2024 16:08:20 GMT
- Title: AttCDCNet: Attention-enhanced Chest Disease Classification using X-Ray Images
- Authors: Omar Hesham Khater, Abdullahi Sani Shuaib, Sami Ul Haq, Abdul Jabbar Siddiqui,
- Abstract summary: We propose a novel detection model named textbfAttCDCNet for the task of X-ray image diagnosis.
The proposed model achieved an accuracy, precision and recall of 94.94%, 95.14% and 94.53%, respectively, on the COVID-19 Radiography dataset.
- Score: 0.0
- License:
- Abstract: Chest X-rays (X-ray images) have been proven to be effective for the diagnosis of chest diseases, including Pneumonia, Lung Opacity, and COVID-19. However, relying on traditional medical methods for diagnosis from X-ray images is prone to delays and inaccuracies because the medical personnel who evaluate the X-ray images may have preconceived biases. For this reason, researchers have proposed the use of deep learning-based techniques to facilitate the diagnosis process. The preeminent method is the use of sophisticated Convolutional Neural Networks (CNNs). In this paper, we propose a novel detection model named \textbf{AttCDCNet} for the task of X-ray image diagnosis, enhancing the popular DenseNet121 model by adding an attention block to help the model focus on the most relevant regions, using focal loss as a loss function to overcome the imbalance of the dataset problem, and utilizing depth-wise convolution to reduce the parameters to make the model lighter. Through extensive experimental evaluations, the proposed model demonstrates exceptional performance, showing better results than the original DenseNet121. The proposed model achieved an accuracy, precision and recall of 94.94%, 95.14% and 94.53%, respectively, on the COVID-19 Radiography Dataset.
Related papers
- Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning [46.75992018094998]
This research addresses the challenges of diagnosing chest X-rays (CXRs) at low resolutions.
High-resolution CXR imaging is crucial for identifying small but critical anomalies, such as nodules or opacities.
This paper presents the Multilevel Collaborative Attention Knowledge (MLCAK) method.
arXiv Detail & Related papers (2024-05-22T06:10:54Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Automated detection of COVID-19 cases from chest X-ray images using deep
neural network and XGBoost [0.0]
A novel approach to diagnosing coronavirus disease from X-ray images was proposed.
DenseNet169 deep neural network was used to extract the features of X-ray images taken from the patients' chest.
arXiv Detail & Related papers (2021-09-03T13:41:13Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - PDCOVIDNet: A Parallel-Dilated Convolutional Neural Network Architecture
for Detecting COVID-19 from Chest X-Ray Images [1.4824891788575418]
COVID-19 pandemic continues to severely undermine the prosperity of the global health system.
The use of chest X-ray images for radiological assessment is one of the essential screening techniques.
We propose a parallel-dilated convolutional neural network based COVID-19 detection system from chest x-ray images.
arXiv Detail & Related papers (2020-07-29T12:28:16Z) - An Uncertainty-aware Transfer Learning-based Framework for Covid-19
Diagnosis [10.832659320593347]
This paper proposes a deep uncertainty-aware transfer learning framework for COVID-19 detection using medical images.
Four popular convolutional neural networks (CNNs) are applied to extract deep features from chest X-ray and computed tomography (CT) images.
Extracted features are then processed by different machine learning and statistical modelling techniques to identify COVID-19 cases.
arXiv Detail & Related papers (2020-07-26T20:15:01Z) - Context Learning for Bone Shadow Exclusion in CheXNet Accuracy
Improvement [14.18754838863113]
After ChestX-ray14 dataset containing over 100,000 frontal-view X-ray images of 14 diseases was released, several models were proposed with high accuracy.
We develop a work flow for lung disease diagnosis in chest X-ray images, which can improve the average AUROC of the state-of-the-art model from 0.8414 to 0.8445.
arXiv Detail & Related papers (2020-05-13T07:29:03Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z) - Classification of COVID-19 in chest X-ray images using DeTraC deep
convolutional neural network [6.381149074212898]
Chest X-ray is the first imaging technique that plays an important role in the diagnosis of COVID-19 disease.
Due to the high availability of large-scale annotated image datasets, great success has been achieved using convolutional neural networks (CNNs) for image recognition and classification.
Thanks to transfer learning, an effective mechanism that can provide a promising solution by transferring knowledge from generic object recognition tasks to domain-specific tasks.
arXiv Detail & Related papers (2020-03-26T15:18:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.