論文の概要: ViSTA: a Framework for Virtual Scenario-based Testing of Autonomous
Vehicles
- arxiv url: http://arxiv.org/abs/2109.02529v2
- Date: Tue, 7 Sep 2021 04:46:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-08 10:43:59.564484
- Title: ViSTA: a Framework for Virtual Scenario-based Testing of Autonomous
Vehicles
- Title(参考訳): ViSTA: 仮想シナリオに基づく自動運転車のテストフレームワーク
- Authors: Andrea Piazzoni, Jim Cherian, Mohamed Azhar, Jing Yew Yap, James Lee
Wei Shung, Roshan Vijay
- Abstract要約: 仮想シナリオに基づく自律走行車テスト(AV)のためのフレームワークViSTAについて紹介する。
本稿では,有意なパラメータを持つ特殊目的シナリオの設計を容易にする包括的テストケース生成手法について述べる。
テストケースの実行を自動化し、これらのテストケース下でのAVの性能を分析する方法について述べる。
- 参考スコア(独自算出の注目度): 2.20200533591633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present ViSTA, a framework for Virtual Scenario-based
Testing of Autonomous Vehicles (AV), developed as part of the 2021 IEEE
Autonomous Test Driving AI Test Challenge. Scenario-based virtual testing aims
to construct specific challenges posed for the AV to overcome, albeit in
virtual test environments that may not necessarily resemble the real world.
This approach is aimed at identifying specific issues that arise safety
concerns before an actual deployment of the AV on the road. In this paper, we
describe a comprehensive test case generation approach that facilitates the
design of special-purpose scenarios with meaningful parameters to form test
cases, both in automated and manual ways, leveraging the strength and
weaknesses of either. Furthermore, we describe how to automate the execution of
test cases, and analyze the performance of the AV under these test cases.
- Abstract(参考訳): 本稿では,2021年のIEEE Autonomous Test Driving AI Test Challengeの一環として開発された,仮想シナリオベースの自律走行テスト(AV)フレームワークであるViSTAを紹介する。
シナリオベースの仮想テストは、現実の世界に必ずしも似ていない仮想テスト環境では、AVが克服すべき特定の課題を構築することを目的としている。
このアプローチは、道路へのavの実際の配備前に、安全上の懸念を引き起こす特定の問題を特定することを目的としている。
本稿では,テストケースを自動と手動の両方で構成し,両者の強みと弱みを生かして,有意義なパラメータを持つ専用シナリオの設計を容易にする総合的なテストケース生成手法について述べる。
さらに、テストケースの実行を自動化する方法を説明し、これらのテストケースにおけるavの性能を分析する。
関連論文リスト
- AutoSurvey: Large Language Models Can Automatically Write Surveys [77.0458309675818]
本稿では,総合的な文献調査を自動作成する手法であるAutoSurveyを紹介する。
従来の調査論文は、膨大な量の情報と複雑さのために、課題に直面している。
我々の貢献には、調査問題に対する総合的な解決策、信頼性評価方法、AutoSurveyの有効性を実証する実験的な検証が含まれる。
論文 参考訳(メタデータ) (2024-06-10T12:56:06Z) - A Requirements-Driven Platform for Validating Field Operations of Small
Uncrewed Aerial Vehicles [48.67061953896227]
DroneReqValidator (DRV)は、sUAS開発者が運用コンテキストを定義し、複数のsUASミッション要件を設定し、安全性特性を指定し、独自のsUASアプリケーションを高忠実な3D環境にデプロイすることを可能にする。
DRVモニタリングシステムは、sUASと環境からランタイムデータを収集し、安全特性のコンプライアンスを分析し、違反をキャプチャする。
論文 参考訳(メタデータ) (2023-07-01T02:03:49Z) - Identifying and Explaining Safety-critical Scenarios for Autonomous
Vehicles via Key Features [5.634825161148484]
本稿では,AVの安全でない動作を明らかにする能力に影響を及ぼすテストシナリオの重要な特徴を特定するために,ISA(インスタンス空間解析)を用いる。
ISAは、安全クリティカルなシナリオと通常の運転とを最も区別する機能を特定し、2Dのテストシナリオ結果(セーフ/アンセーフ)への影響を可視化する。
特定された機能の予測能力をテストするために、5つの機械学習分類器をトレーニングし、テストシナリオを安全または安全でないものとして分類する。
論文 参考訳(メタデータ) (2022-12-15T00:52:47Z) - Learning to Generalize across Domains on Single Test Samples [126.9447368941314]
単体テストサンプルでドメインをまたいで一般化することを学ぶ。
変分ベイズ推論問題として単検体への適応を定式化する。
我々のモデルは、ドメインの一般化のための複数のベンチマークにおいて、最先端のメソッドよりも少なくとも同等で、より優れたパフォーマンスを達成します。
論文 参考訳(メタデータ) (2022-02-16T13:21:04Z) - ADAPQUEST: A Software for Web-Based Adaptive Questionnaires based on
Bayesian Networks [70.79136608657296]
ADAPQUESTは、ベイジアンネットワークに基づく適応型アンケートの開発のためにJavaで書かれたソフトウェアツールである。
質問紙には、アンケートパラメータの引用を簡略化するために、専用の実施戦略が組み込まれている。
本ツールの精神疾患診断への応用についても論じる。
論文 参考訳(メタデータ) (2021-12-29T09:50:44Z) - A Survey on Scenario-Based Testing for Automated Driving Systems in
High-Fidelity Simulation [26.10081199009559]
道路上でシステムをテストすることは、現実世界と望ましいアプローチに最も近いが、非常にコストがかかる。
一般的な選択肢は、ADSのパフォーマンスを、よく設計されたシナリオ、すなわちシナリオベースのテストで評価することである。
高忠実度シミュレータはこの設定で、何のシナリオかをテストする際の柔軟性と利便性を最大化するために広く使われている。
論文 参考訳(メタデータ) (2021-12-02T03:41:33Z) - Addressing the IEEE AV Test Challenge with Scenic and VerifAI [10.221093591444731]
本稿では,IEEE AVテストチャレンジのシミュレーションにおいて,自律走行車(AV)のテストに対する我々の公式なアプローチを要約する。
我々は,知的サイバー物理システムのための形式駆動型シミュレーションに関するこれまでの研究を生かした,系統的なテストフレームワークを実証する。
論文 参考訳(メタデータ) (2021-08-20T04:51:27Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles [76.46575807165729]
我々は,任意のLiDARベースの自律システムに対して,安全クリティカルなシナリオを生成するための,敵対的フレームワークであるAdvSimを提案する。
センサデータから直接シミュレートすることにより、完全な自律スタックに対して安全クリティカルな敵シナリオを得る。
論文 参考訳(メタデータ) (2021-01-16T23:23:12Z) - Towards Automated Safety Coverage and Testing for Autonomous Vehicles
with Reinforcement Learning [0.3683202928838613]
検証は、システムが日々の運転で遭遇する可能性のあるシナリオや状況において、自動運転車システムをテストに投入する。
本稿では,AVソフトウェア実装における障害事例と予期せぬ交通状況を生成するために強化学習(RL)を提案する。
論文 参考訳(メタデータ) (2020-05-22T19:00:38Z) - Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to
the Real World [8.498542964344987]
自動運転車の安全性のシナリオベース自動テストに対する新しいアプローチを提案する。
提案手法は,シナリオの形式的仕様と安全性特性を組み合わせた形式的手法に基づいている。
論文 参考訳(メタデータ) (2020-03-17T14:17:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。