論文の概要: On the Out-of-distribution Generalization of Probabilistic Image
Modelling
- arxiv url: http://arxiv.org/abs/2109.02639v1
- Date: Sat, 4 Sep 2021 17:00:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-08 14:44:41.293900
- Title: On the Out-of-distribution Generalization of Probabilistic Image
Modelling
- Title(参考訳): 確率的画像モデリングの分布外一般化について
- Authors: Mingtian Zhang, Andi Zhang, Steven McDonagh
- Abstract要約: 画像モデルの場合、OOD能力は局所的な特徴に支配されていることを示す。
これは、OODの性能向上に向け、ローカルな画像特徴のみをモデル化するローカル自動回帰モデルの提案を動機付けます。
- 参考スコア(独自算出の注目度): 6.908460960191626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) detection and lossless compression constitute two
problems that can be solved by the training of probabilistic models on a first
dataset with subsequent likelihood evaluation on a second dataset, where data
distributions differ. By defining the generalization of probabilistic models in
terms of likelihood we show that, in the case of image models, the OOD
generalization ability is dominated by local features. This motivates our
proposal of a Local Autoregressive model that exclusively models local image
features towards improving OOD performance. We apply the proposed model to OOD
detection tasks and achieve state-of-the-art unsupervised OOD detection
performance without the introduction of additional data. Additionally, we
employ our model to build a new lossless image compressor: NeLLoC (Neural Local
Lossless Compressor) and report state-of-the-art compression rates and model
size.
- Abstract(参考訳): out-of-distribution (ood) 検出とロスレス圧縮は、データ分布が異なる第1データセット上の確率モデルのトレーニングによって解決できる2つの問題である。
確率モデルの一般化を定義することによって、画像モデルの場合、OOD一般化能力は局所的な特徴に支配されていることを示す。
これは、OODの性能向上に向け、ローカル画像の特徴のみをモデル化するローカル自動回帰モデルの提案を動機付けます。
提案手法をOOD検出タスクに適用し、追加データを導入することなく最先端の未監視OOD検出性能を実現する。
さらに,新しいロスレス画像圧縮機であるneroc(neural local lossless compressor)を構築し,最先端の圧縮速度とモデルサイズを報告した。
関連論文リスト
- Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
「忘れ分布からのサンプルを特徴とする特定種類の画像の生成を減らすために、近似機械学習アルゴリズムを提案する。」
次に、既存のベースラインと比較してモデルの整合性を保つ上で優れた効果を示す未学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-04T13:15:28Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Model Reprogramming Outperforms Fine-tuning on Out-of-distribution Data in Text-Image Encoders [56.47577824219207]
本稿では,侵入的微調整技術に関連する隠れたコストを明らかにする。
ファインチューニングのための新しいモデル再プログラミング手法を導入し、それをリプログラマと呼ぶ。
我々の経験的証拠は、Re Programmerは侵入力が少なく、より優れた下流モデルが得られることを示している。
論文 参考訳(メタデータ) (2024-03-16T04:19:48Z) - ResEnsemble-DDPM: Residual Denoising Diffusion Probabilistic Models for
Ensemble Learning [3.2564047163418754]
本稿では,アンサンブル学習を通じて拡散モデルとエンドツーエンドモデルをシームレスに統合するResEnsemble-DDPMを提案する。
実験の結果,ResEnsemble-DDPMは既存のモデルの性能をさらに向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-12-04T07:14:20Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
微調整の深層学習モデルは、分布内(ID)性能と分布外(OOD)堅牢性の間のトレードオフにつながる可能性がある。
そこで本研究では,マスク付き画像を対物サンプルとして用いて,ファインチューニングモデルのロバスト性を向上させる新しいファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-03-06T11:51:28Z) - Exploring Optimal Substructure for Out-of-distribution Generalization
via Feature-targeted Model Pruning [23.938392334438582]
本研究では,不均一な部分構造を自動探索するために,SFPと呼ばれる新しいSpurious Feature-targeted Model Pruningフレームワークを提案する。
SFP は構造ベースおよび非構造 OOD 一般化 SOTA をそれぞれ4.72% と 23.35% に向上させることができる。
論文 参考訳(メタデータ) (2022-12-19T13:51:06Z) - Watermarking for Out-of-distribution Detection [76.20630986010114]
Out-of-Distribution (OOD) 検出は、よく訓練された深層モデルから抽出された表現に基づいてOODデータを識別することを目的としている。
本稿では,透かしという一般的な手法を提案する。
我々は,元データの特徴に重畳される統一パターンを学習し,ウォーターマーキング後にモデルの検出能力が大きく向上する。
論文 参考訳(メタデータ) (2022-10-27T06:12:32Z) - SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in
Fine-tuned Source Code Models [58.78043959556283]
本研究は,Low-Rank Adaptation (LoRA)ファインチューニング手法を含む,異なる微調整手法によるモデルの挙動について検討する。
解析の結果、LoRAファインチューニングは様々なシナリオにおけるフルファインチューニングよりも、OODの一般化性能が大幅に向上していることが判明した。
論文 参考訳(メタデータ) (2022-10-10T16:07:24Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
我々はDetail Enhanced Contrastive Loss (DECLoss)と呼ばれるCOO問題に対する明確な解決策を提案する。
DECLossはコントラスト学習のクラスタリング特性を利用して、潜在的な高分解能分布の分散を直接的に低減する。
我々は複数の超高解像度ベンチマーク上でDECLosを評価し,PSNR指向モデルの知覚品質を向上させることを実証した。
論文 参考訳(メタデータ) (2022-01-04T08:30:09Z) - Robust Out-of-Distribution Detection on Deep Probabilistic Generative
Models [0.06372261626436676]
アウト・オブ・ディストリビューション(OOD)検出は機械学習システムにおいて重要な課題である。
深い確率的生成モデルは、データサンプルの可能性を推定することによって、OODの検出を容易にする。
本稿では,外周露光を伴わない新しい検出指標を提案する。
論文 参考訳(メタデータ) (2021-06-15T06:36:10Z) - Uncertainty-aware Generalized Adaptive CycleGAN [44.34422859532988]
unpaired image-to-image translationは、教師なしの方法で画像ドメイン間のマッピングを学ぶことを指す。
既存の手法はしばしば、外れ値への堅牢性や予測不確実性を明示的にモデル化せずに決定論的マッピングを学習する。
Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC) という新しい確率論的手法を提案する。
論文 参考訳(メタデータ) (2021-02-23T15:22:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。