論文の概要: ResEnsemble-DDPM: Residual Denoising Diffusion Probabilistic Models for
Ensemble Learning
- arxiv url: http://arxiv.org/abs/2312.01682v1
- Date: Mon, 4 Dec 2023 07:14:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 16:01:45.157800
- Title: ResEnsemble-DDPM: Residual Denoising Diffusion Probabilistic Models for
Ensemble Learning
- Title(参考訳): resensemble-ddpm : アンサンブル学習のための拡散確率モデル
- Authors: Shi Zhenning, Dong Changsheng, Xie Xueshuo, Pan Bin, He Along, Li Tao
- Abstract要約: 本稿では,アンサンブル学習を通じて拡散モデルとエンドツーエンドモデルをシームレスに統合するResEnsemble-DDPMを提案する。
実験の結果,ResEnsemble-DDPMは既存のモデルの性能をさらに向上させることができることがわかった。
- 参考スコア(独自算出の注目度): 3.2564047163418754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, denoising diffusion probabilistic models have been adapted for many
image segmentation tasks. However, existing end-to-end models have already
demonstrated remarkable capabilities. Rather than using denoising diffusion
probabilistic models alone, integrating the abilities of both denoising
diffusion probabilistic models and existing end-to-end models can better
improve the performance of image segmentation. Based on this, we implicitly
introduce residual term into the diffusion process and propose
ResEnsemble-DDPM, which seamlessly integrates the diffusion model and the
end-to-end model through ensemble learning. The output distributions of these
two models are strictly symmetric with respect to the ground truth
distribution, allowing us to integrate the two models by reducing the residual
term. Experimental results demonstrate that our ResEnsemble-DDPM can further
improve the capabilities of existing models. Furthermore, its ensemble learning
strategy can be generalized to other downstream tasks in image generation and
get strong competitiveness.
- Abstract(参考訳): 近年,多くの画像分割作業に拡散確率モデルが適応している。
しかし、既存のエンド・ツー・エンドモデルはすでに驚くべき性能を示している。
拡散確率モデルのみを用いるのではなく、拡散確率モデルと既存のエンドツーエンドモデルの両方の能力を統合することで、画像セグメンテーションの性能を向上させることができる。
そこで我々は,拡散過程に残留項を暗黙的に導入し,アンサンブル学習を通じて拡散モデルとエンドツーエンドモデルをシームレスに統合するResEnsemble-DDPMを提案する。
これら2つのモデルの出力分布は基底真理分布に対して厳密に対称であり、残留項を減らして2つのモデルを統合することができる。
実験の結果,resensemble-ddpmは既存モデルの能力をさらに向上できることがわかった。
さらに、そのアンサンブル学習戦略は、画像生成において他の下流タスクに一般化することができ、強い競争力を得ることができる。
関連論文リスト
- Dual Diffusion for Unified Image Generation and Understanding [32.7554623473768]
マルチモーダル理解と生成のための大規模かつ完全なエンドツーエンド拡散モデルを提案する。
我々は、画像とテキストの条件付き確率を同時にトレーニングするクロスモーダル最大推定フレームワークを活用する。
我々のモデルは、最近の統合画像理解・生成モデルと比較して、競争性能が向上した。
論文 参考訳(メタデータ) (2024-12-31T05:49:00Z) - Progressive Compression with Universally Quantized Diffusion Models [35.199627388957566]
プログレッシブコーディングのための拡散モデルの可能性を探り、インクリメンタルに伝送および復号化が可能なビット列を導出する。
ガウス拡散モデルや条件付き拡散モデルに基づく先行研究とは異なり、前処理における一様雑音を伴う新しい拡散モデルを提案する。
画像圧縮において有望な第一結果が得られ、単一のモデルで幅広いビットレートで競合速度歪みとレートリアリズムが達成される。
論文 参考訳(メタデータ) (2024-12-14T19:06:01Z) - Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
エネルギーベース拡散言語モデル(Energy-based Diffusion Language Model, EDLM)は、拡散ステップごとに全シーケンスレベルで動作するエネルギーベースモデルである。
我々のフレームワークは、既存の拡散モデルよりも1.3$times$のサンプリングスピードアップを提供する。
論文 参考訳(メタデータ) (2024-10-28T17:25:56Z) - Adaptive Training Meets Progressive Scaling: Elevating Efficiency in Diffusion Models [52.1809084559048]
TDCトレーニングと呼ばれる新しい2段階分割型トレーニング戦略を提案する。
タスクの類似性と難易度に基づいてタイムステップをグループ化し、高度にカスタマイズされた復調モデルを各グループに割り当て、拡散モデルの性能を向上させる。
2段階のトレーニングでは、各モデルを個別にトレーニングする必要がなくなるが、総トレーニングコストは、単一の統合されたデノナイジングモデルをトレーニングするよりもさらに低い。
論文 参考訳(メタデータ) (2023-12-20T03:32:58Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
離散空間に対するスコアマッチングを自然に拡張する新たな損失として,スコアエントロピーを提案する。
標準言語モデリングタスク上で,Score Entropy Discrete Diffusionモデルをテストする。
論文 参考訳(メタデータ) (2023-10-25T17:59:12Z) - Soft Mixture Denoising: Beyond the Expressive Bottleneck of Diffusion
Models [76.46246743508651]
我々は,現在の拡散モデルが後方認知において表現力のあるボトルネックを持っていることを示した。
本稿では,後方復調のための表現的かつ効率的なモデルであるソフトミキシング・デノナイジング(SMD)を導入する。
論文 参考訳(メタデータ) (2023-09-25T12:03:32Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Image Generation with Multimodal Priors using Denoising Diffusion
Probabilistic Models [54.1843419649895]
このタスクを達成するために生成モデルを使用する際の大きな課題は、すべてのモダリティと対応する出力を含むペアデータの欠如である。
本稿では,拡散確率的合成モデルに基づく多モデル先行画像生成手法を提案する。
論文 参考訳(メタデータ) (2022-06-10T12:23:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。