論文の概要: Intelligent Motion Planning for a Cost-effective Object Follower Mobile
Robotic System with Obstacle Avoidance
- arxiv url: http://arxiv.org/abs/2109.02700v1
- Date: Mon, 6 Sep 2021 19:19:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-09 03:20:43.325286
- Title: Intelligent Motion Planning for a Cost-effective Object Follower Mobile
Robotic System with Obstacle Avoidance
- Title(参考訳): 障害物回避型費用対物追従型移動ロボットシステムの知的運動計画
- Authors: Sai Nikhil Gona, Prithvi Raj Bandhakavi
- Abstract要約: 本稿では,ロボットビジョンと深層学習を用いて,必要な直線および角速度を求めるロボットシステムを提案する。
私たちが提案している新しい手法は、任意の種類の照明において、ユニークな色付けされた物体の位置を検出するのに正確である。
- 参考スコア(独自算出の注目度): 0.2062593640149623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There are few industries which use manually controlled robots for carrying
material and this cannot be used all the time in all the places. So, it is very
tranquil to have robots which can follow a specific human by following the
unique coloured object held by that person. So, we propose a robotic system
which uses robot vision and deep learning to get the required linear and
angular velocities which are {\nu} and {\omega}, respectively. Which in turn
makes the robot to avoid obstacles when following the unique coloured object
held by the human. The novel methodology that we are proposing is accurate in
detecting the position of the unique coloured object in any kind of lighting
and tells us the horizontal pixel value where the robot is present and also
tells if the object is close to or far from the robot. Moreover, the artificial
neural networks that we have used in this problem gave us a meagre error in
linear and angular velocity prediction and the PI controller which was used to
control the linear and angular velocities, which in turn controls the position
of the robot gave us impressive results and this methodology outperforms all
other methodologies.
- Abstract(参考訳): 材料を運ぶために手動で制御されたロボットを使用する産業はほとんどなく、あらゆる場所で常に使用することはできない。
したがって、その人の持つユニークな色の物体を追従することで、特定の人間を追従できるロボットを持つことは、非常に静かである。
そこで本研究では,ロボットビジョンと深層学習を用いて,それぞれに必要となる直線速度と角速度を求めるロボットシステムを提案する。
これによってロボットは、人間が保持するユニークな色の物体に従えば、障害物を避けることができる。
提案する新しい手法は,任意の照明における独特の色付けされた物体の位置を検知し,ロボットが存在する水平画素値を伝えるとともに,物体がロボットに近づいたり近づいたりしているかどうかを知らせるものである。
さらに,我々がこの問題に用いた人工ニューラルネットワークは,線形および角速度予測における単純な誤差と,線形および角速度を制御するために使用されるpiコントローラを与え,ロボットの位置を制御することにより,印象的な結果を得た。
関連論文リスト
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
微分可能シミュレーションは、システム識別の強力なツールとなっている。
本手法は,オブジェクト自体のデータに頼ることなく,ロボットからの情報を用いてオブジェクト特性を校正する。
低コストなロボットプラットフォームにおける本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-04T20:48:38Z) - Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
我々は,ロボットを視覚のみからモデル化し,制御することを自律的に学習するアーキテクチャであるNeural Jacobian Fieldsを紹介する。
提案手法は,正確なクローズドループ制御を実現し,各ロボットの因果動的構造を復元する。
論文 参考訳(メタデータ) (2024-07-11T17:55:49Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
本稿では,ロボットの動きに対する新しいディープラーニング手法を提案する。
本手法では,新しいロボットへの翻訳を容易にする,人間とロボットのペアデータを必要としない。
我々のモデルは、効率と精度の観点から、人間とロボットの類似性に関する既存の研究よりも優れています。
論文 参考訳(メタデータ) (2023-09-11T08:55:04Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
眼内カメラは、視覚に基づくロボット操作において、より優れたサンプル効率と一般化を可能にすることを約束している。
一方、人間がタスクを行うビデオは、ロボット遠隔操作の専門知識を欠いているため、収集コストがずっと安い。
本研究では,広範にラベルのない人間ビデオによるロボット模倣データセットを拡張し,眼球運動ポリシーの一般化を大幅に促進する。
論文 参考訳(メタデータ) (2023-07-12T07:04:53Z) - Image-based Pose Estimation and Shape Reconstruction for Robot
Manipulators and Soft, Continuum Robots via Differentiable Rendering [20.62295718847247]
自律システムは3D世界における動きを捉えローカライズするためにセンサーに依存しているため、計測データからの状態推定はロボットアプリケーションにとって極めて重要である。
本研究では,カメラ画像から画像に基づくロボットのポーズ推定と形状再構成を実現する。
柔らかい連続ロボットの形状再構成において,幾何学的形状プリミティブを用いる手法が高精度であり,ロボットマニピュレータの姿勢推定が可能であることを実証した。
論文 参考訳(メタデータ) (2023-02-27T18:51:29Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z) - Embedded Computer Vision System Applied to a Four-Legged Line Follower
Robot [0.0]
本プロジェクトは,ロボットの視覚を動作に結びつけるコンピュータビジョン組み込みシステムを用いて,ロボットを駆動することを目的としている。
このロボットは典型的な移動ロボットの課題であるラインフォローに適用される。
次に移動する場所の決定は、経路の線の中心に基づいており、完全に自動化されている。
論文 参考訳(メタデータ) (2021-01-12T23:52:53Z) - Deep Reinforcement learning for real autonomous mobile robot navigation
in indoor environments [0.0]
本研究では,地図やプランナーを使わずに,未知の環境下での自律型自律学習ロボットナビゲーションの概念を実証する。
ロボットの入力は、2DレーザースキャナーとRGB-Dカメラからの融合データと目標への向きのみである。
Asynchronous Advantage Actor-Critic Network(GA3C)の出力動作は、ロボットの線形および角速度である。
論文 参考訳(メタデータ) (2020-05-28T09:15:14Z) - Morphology-Agnostic Visual Robotic Control [76.44045983428701]
MAVRICは、ロボットの形態に関する最小限の知識で機能するアプローチである。
本稿では,視覚誘導型3Dポイントリーチ,軌道追従,ロボットとロボットの模倣について紹介する。
論文 参考訳(メタデータ) (2019-12-31T15:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。