論文の概要: Countering Online Hate Speech: An NLP Perspective
- arxiv url: http://arxiv.org/abs/2109.02941v1
- Date: Tue, 7 Sep 2021 08:48:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-08 21:04:34.355329
- Title: Countering Online Hate Speech: An NLP Perspective
- Title(参考訳): オンラインヘイトスピーチのカウンセリング:NLPの視点から
- Authors: Mudit Chaudhary, Chandni Saxena, Helen Meng
- Abstract要約: オンラインヘイトフル行動の傘語であるオンライン毒性は、オンラインヘイトスピーチのような形で現れている。
ソーシャルメディアを通じた大量コミュニケーションの増加は、オンラインヘイトスピーチの有害な結果をさらに悪化させる。
本稿では、ヘイトスピーチにおけるNLP対応手法に関する総合的な概念的枠組みと、オンラインヘイトスピーチ対策におけるNLPの現在の動向に関する徹底的な調査について述べる。
- 参考スコア(独自算出の注目度): 34.19875714256597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online hate speech has caught everyone's attention from the news related to
the COVID-19 pandemic, US elections, and worldwide protests. Online toxicity -
an umbrella term for online hateful behavior, manifests itself in forms such as
online hate speech. Hate speech is a deliberate attack directed towards an
individual or a group motivated by the targeted entity's identity or opinions.
The rising mass communication through social media further exacerbates the
harmful consequences of online hate speech. While there has been significant
research on hate-speech identification using Natural Language Processing (NLP),
the work on utilizing NLP for prevention and intervention of online hate speech
lacks relatively. This paper presents a holistic conceptual framework on
hate-speech NLP countering methods along with a thorough survey on the current
progress of NLP for countering online hate speech. It classifies the countering
techniques based on their time of action, and identifies potential future
research areas on this topic.
- Abstract(参考訳): オンラインヘイトスピーチは、新型コロナウイルス(COVID-19)のパンデミックや米国の選挙、世界的な抗議活動に関連するニュースから、誰もが注目を集めている。
オンライン有害性 オンラインヘイトフル行動を意味する包括的用語は、オンラインヘイトスピーチのような形で現れる。
ヘイトスピーチ(英: Hate speech)とは、対象の個人や集団に対して意図的な攻撃である。
ソーシャルメディアを通じた大量コミュニケーションの増加は、オンラインヘイトスピーチの有害な結果をさらに悪化させる。
自然言語処理(NLP)を用いたヘイトスピーチ識別に関する研究は盛んに行われているが、オンラインヘイトスピーチの予防と介入にNLPを活用する研究は比較的不十分である。
本稿では、ヘイトスピーチにおけるNLP対応手法に関する総合的な概念的枠組みと、オンラインヘイトスピーチ対策におけるNLPの現在の動向に関する詳細な調査について述べる。
それは、その行動時間に基づいてカウンターテクニックを分類し、このトピックに関する将来の研究領域を特定する。
関連論文リスト
- Generative AI may backfire for counterspeech [20.57872238271025]
我々は、最先端AIが生み出す文脈化された逆音声が、オンラインヘイトスピーチを抑制するのに有効であるかどうかを分析する。
その結果,非コンテクスチュアライズされた対応音声は,オンラインヘイトスピーチを著しく減少させることがわかった。
しかし、LLMsによって生成される文脈化された反音声は効果が無く、バックファイアさえも生じうる。
論文 参考訳(メタデータ) (2024-11-22T14:47:00Z) - ProvocationProbe: Instigating Hate Speech Dataset from Twitter [0.39052860539161904]
textitProvocationProbeは、ヘイトスピーチを一般的なヘイトスピーチと区別するためのデータセットである。
本研究では、Twitterから約2万件のツイートを収集し、全世界で9件の論争を巻き起こした。
論文 参考訳(メタデータ) (2024-10-25T16:57:59Z) - Demarked: A Strategy for Enhanced Abusive Speech Moderation through Counterspeech, Detoxification, and Message Management [71.99446449877038]
本研究では, 重度尺度, (ii) ターゲットの存在, (iii) 文脈尺度, (iv) 法的尺度の4つの側面を基礎として, より包括的手法であるDemarcation scoreing abusive speechを提案する。
本研究は,ネット上での虐待的スピーチを効果的に解決するための今後の戦略を明らかにすることを目的としている。
論文 参考訳(メタデータ) (2024-06-27T21:45:33Z) - Hostile Counterspeech Drives Users From Hate Subreddits [1.5035331281822]
我々は、Redditにおけるヘイトサブレディット内の新参者に対する反音声の効果を分析した。
非敵対的なカウンタースピーチは、ユーザーがこれらの憎悪のサブレディットから完全に切り離すのを防ぐのに効果がない。
単一の敵対的な反論は、将来のエンゲージメントの可能性を大幅に減らす。
論文 参考訳(メタデータ) (2024-05-28T17:12:41Z) - NLP Systems That Can't Tell Use from Mention Censor Counterspeech, but Teaching the Distinction Helps [43.40965978436158]
問題のある内容に反論する対訳は、しばしば有害な言語に言及するが、それ自体は有害ではない。
最近の言語モデルでさえ、言及と使用の区別に失敗していることを示す。
この失敗は、誤報とヘイトスピーチ検出という2つの重要な下流タスクに伝播する。
論文 参考訳(メタデータ) (2024-04-02T05:36:41Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Nipping in the Bud: Detection, Diffusion and Mitigation of Hate Speech
on Social Media [21.47216483704825]
本稿では,自動ヘイト緩和システムの構築を妨げる方法論的課題について述べる。
ソーシャルメディア上でのヘイトスピーチの拡散を制限するための一連のソリューションについて論じる。
論文 参考訳(メタデータ) (2022-01-04T03:44:46Z) - Impact and dynamics of hate and counter speech online [0.0]
市民によるカウンタースピーチは、ヘイトスピーチと戦い、平和的で非分極的な言論を促進するための有望な方法だ。
われわれはドイツのTwitterで4年間に起きた180,000件の政治的会話を分析した。
論文 参考訳(メタデータ) (2020-09-16T01:43:28Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
新型コロナウイルスは、アジアのコミュニティをターゲットにしたソーシャルメディア上で人種差別や憎悪を引き起こしている。
我々は、Twitterのレンズを通して、反アジアヘイトスピーチの進化と普及について研究する。
私たちは、14ヶ月にわたる反アジア的憎悪と反音声のデータセットとして最大となるCOVID-HATEを作成します。
論文 参考訳(メタデータ) (2020-05-25T21:58:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。