論文の概要: NLP Systems That Can't Tell Use from Mention Censor Counterspeech, but Teaching the Distinction Helps
- arxiv url: http://arxiv.org/abs/2404.01651v1
- Date: Tue, 2 Apr 2024 05:36:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 17:48:15.856587
- Title: NLP Systems That Can't Tell Use from Mention Censor Counterspeech, but Teaching the Distinction Helps
- Title(参考訳): メンション・センサ・カウンテル音声からの使用を判断できないNLPシステム : 識別支援の指導
- Authors: Kristina Gligoric, Myra Cheng, Lucia Zheng, Esin Durmus, Dan Jurafsky,
- Abstract要約: 問題のある内容に反論する対訳は、しばしば有害な言語に言及するが、それ自体は有害ではない。
最近の言語モデルでさえ、言及と使用の区別に失敗していることを示す。
この失敗は、誤報とヘイトスピーチ検出という2つの重要な下流タスクに伝播する。
- 参考スコア(独自算出の注目度): 43.40965978436158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of words to convey speaker's intent is traditionally distinguished from the `mention' of words for quoting what someone said, or pointing out properties of a word. Here we show that computationally modeling this use-mention distinction is crucial for dealing with counterspeech online. Counterspeech that refutes problematic content often mentions harmful language but is not harmful itself (e.g., calling a vaccine dangerous is not the same as expressing disapproval of someone for calling vaccines dangerous). We show that even recent language models fail at distinguishing use from mention, and that this failure propagates to two key downstream tasks: misinformation and hate speech detection, resulting in censorship of counterspeech. We introduce prompting mitigations that teach the use-mention distinction, and show they reduce these errors. Our work highlights the importance of the use-mention distinction for NLP and CSS and offers ways to address it.
- Abstract(参考訳): 話者の意図を伝える言葉の使用は、伝統的に、誰かが言ったことを引用したり、単語の特性を指摘したりする言葉の「メンション」とは区別される。
ここでは、オンラインの対音声処理において、この使い分けを計算的にモデル化することが重要であることを示す。
問題のある内容に反論する対抗語は、しばしば有害な言語に言及するが、それ自体は有害ではない(例えば、ワクチンを危険と呼ぶことは、ワクチンを危険と呼ぶ人の不承認を表すのと同じではない)。
最近の言語モデルでさえ、言及と使用の区別に失敗し、この失敗は、誤情報とヘイトスピーチ検出という2つの重要な下流タスクに伝播し、反音声の検閲をもたらすことを示す。
そこで我々は,これらの誤りを減らし,その軽減を図っている。
我々の研究は、NLPとCSSの使い分けの重要性を強調し、それに対処する方法を提供しています。
関連論文リスト
- Generative AI may backfire for counterspeech [20.57872238271025]
我々は、最先端AIが生み出す文脈化された逆音声が、オンラインヘイトスピーチを抑制するのに有効であるかどうかを分析する。
その結果,非コンテクスチュアライズされた対応音声は,オンラインヘイトスピーチを著しく減少させることがわかった。
しかし、LLMsによって生成される文脈化された反音声は効果が無く、バックファイアさえも生じうる。
論文 参考訳(メタデータ) (2024-11-22T14:47:00Z) - Towards Unsupervised Speech Recognition Without Pronunciation Models [57.222729245842054]
ほとんどの言語では、音声認識システムを効果的に訓練するのに十分なペア音声とテキストデータがない。
本稿では、教師なしASRシステムを開発するために、音素レキシコンへの依存を除去することを提案する。
音声合成とテキスト・テキスト・マスクによるトークン埋込から教師なし音声認識が実現可能であることを実験的に実証した。
論文 参考訳(メタデータ) (2024-06-12T16:30:58Z) - DisCGen: A Framework for Discourse-Informed Counterspeech Generation [34.75404551612012]
本稿では,言論理論に基づく枠組みを提案し,反声と憎しみのあるコメントを結びつける推論リンクについて検討する。
本稿では,Reddit から現在地にある反音声のデータセットを収集するプロセスを提案する。
提案するデータセットとフレームワークを用いて,大規模言語モデルを用いて,談話理論に基づいて文脈的に接地した対音声を生成することができることを示す。
論文 参考訳(メタデータ) (2023-11-29T23:20:17Z) - HARE: Explainable Hate Speech Detection with Step-by-Step Reasoning [29.519687405350304]
本稿では,大規模言語モデル(LLM)の推論能力を利用して,ヘイトスピーチの説明のギャップを埋めるヘイトスピーチ検出フレームワークHAREを紹介する。
SBICとImplicit Hateベンチマークの実験では、モデル生成データを用いた手法がベースラインを一貫して上回ることを示した。
提案手法は,訓練されたモデルの説明品質を高め,未知のデータセットへの一般化を改善する。
論文 参考訳(メタデータ) (2023-11-01T06:09:54Z) - Adversarial Training For Low-Resource Disfluency Correction [50.51901599433536]
ディフルエンシ補正(DC)のための逆学習型シーケンスタグ付けモデルを提案する。
提案手法の利点は,3つのインド語でDCに対して評価することで,合成された非流動データに大きく依存することを示す。
また,本手法は,音声障害によって導入されたASR文字の破面的不一致の除去にも有効である。
論文 参考訳(メタデータ) (2023-06-10T08:58:53Z) - DisfluencyFixer: A tool to enhance Language Learning through Speech To
Speech Disfluency Correction [50.51901599433536]
DisfluencyFixerは、英語とヒンディー語で音声から音声への拡散補正を行うツールである。
提案システムでは,入力音声からの拡散を除去し,出力として流速音声を返却する。
論文 参考訳(メタデータ) (2023-05-26T14:13:38Z) - Leveraging World Knowledge in Implicit Hate Speech Detection [5.5536024561229205]
テキスト中のエンティティの言及に関する現実的な知識は、モデルがヘイトスピーチをよりよく検出するのに役立ちます。
また,実世界の知識がヘイトスピーチ検出に価値を与えない事例についても論じる。
論文 参考訳(メタデータ) (2022-12-28T21:23:55Z) - Hate Speech and Counter Speech Detection: Conversational Context Does
Matter [7.333666276087548]
本稿では,オンラインヘイトとカウンタースピーチのアノテーションと検出における会話コンテキストの役割について検討する。
私たちはRedditのコメントに3段階の分類タスク(ヘイトスピーチ、カウンタースピーチ、中立性)のためのコンテキスト対応データセットを作成しました。
論文 参考訳(メタデータ) (2022-06-13T19:05:44Z) - Improving Self-Supervised Speech Representations by Disentangling
Speakers [56.486084431528695]
音声における自己教師付き学習は、大規模無意味な音声コーパス上で、音声表現ネットワークを訓練することを含む。
話者を遠ざけることは非常に困難であり、スピーカー情報を削除すればコンテンツも失われる可能性がある。
本稿では,コンテンツが著しく失われることなく,話者のゆがみを解消できる新しいSSL手法を提案する。
論文 参考訳(メタデータ) (2022-04-20T04:56:14Z) - Beyond Plain Toxic: Detection of Inappropriate Statements on Flammable
Topics for the Russian Language [76.58220021791955]
本稿では,不合理性という二項的概念と,センシティブなトピックの多項的概念に基づいてラベル付けされた2つのテキストコレクションについて述べる。
不適切な概念を客観するために、クラウドソーシングではデータ駆動方式で定義する。
論文 参考訳(メタデータ) (2022-03-04T15:59:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。