論文の概要: ProvocationProbe: Instigating Hate Speech Dataset from Twitter
- arxiv url: http://arxiv.org/abs/2410.19687v1
- Date: Fri, 25 Oct 2024 16:57:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:36:54.487863
- Title: ProvocationProbe: Instigating Hate Speech Dataset from Twitter
- Title(参考訳): ProvocationProbe:Twitterのヘイトスピーチデータセットを調査
- Authors: Abhay Kumar, Vigneshwaran Shankaran, Rajesh Sharma,
- Abstract要約: textitProvocationProbeは、ヘイトスピーチを一般的なヘイトスピーチと区別するためのデータセットである。
本研究では、Twitterから約2万件のツイートを収集し、全世界で9件の論争を巻き起こした。
- 参考スコア(独自算出の注目度): 0.39052860539161904
- License:
- Abstract: In the recent years online social media platforms has been flooded with hateful remarks such as racism, sexism, homophobia etc. As a result, there have been many measures taken by various social media platforms to mitigate the spread of hate-speech over the internet. One particular concept within the domain of hate speech is instigating hate, which involves provoking hatred against a particular community, race, colour, gender, religion or ethnicity. In this work, we introduce \textit{ProvocationProbe} - a dataset designed to explore what distinguishes instigating hate speech from general hate speech. For this study, we collected around twenty thousand tweets from Twitter, encompassing a total of nine global controversies. These controversies span various themes including racism, politics, and religion. In this paper, i) we present an annotated dataset after comprehensive examination of all the controversies, ii) we also highlight the difference between hate speech and instigating hate speech by identifying distinguishing features, such as targeted identity attacks and reasons for hate.
- Abstract(参考訳): 近年、オンラインソーシャルメディアプラットフォームは人種差別、性差別、同性愛などの憎悪的な発言で溢れている。
その結果、インターネット上でのヘイトスピーチの拡散を緩和するため、さまざまなソーシャルメディアプラットフォームによって多くの措置が取られた。
ヘイトスピーチの領域における特定の概念は、特定のコミュニティ、人種、色、性別、宗教、民族に対する憎悪を喚起するヘイトスピーチである。
本研究では、ヘイトスピーチと一般的なヘイトスピーチとを区別するためのデータセットである「textit{ProvocationProbe}」を紹介する。
この調査では、Twitterから約2万件のツイートを集め、全世界で9件の論争を巻き起こした。
これらの論争は人種差別、政治、宗教など様々なテーマに及んでいる。
本項で述べる。
一 すべての論争を総合的に調査した後、注釈付きデータセットを提示する。
二 ヘイトスピーチとヘイトスピーチとの違いを強調し、ターゲットのアイデンティティ攻撃やヘイトスピーチの理由などの特徴を識別する。
関連論文リスト
- Overview of the HASOC Subtrack at FIRE 2023: Identification of Tokens
Contributing to Explicit Hate in English by Span Detection [40.10513344092731]
反応的に、ブラックボックスモデルを使ってヘイトフルコンテンツを特定すると、投稿が自動的にヘイトフルであるとフラグ付けされた理由について、ユーザーを混乱させる可能性がある。
ポストが公にされる前に、リフレージングを提案することで、積極的な緩和が達成できる。
論文 参考訳(メタデータ) (2023-11-16T12:01:19Z) - Analyzing User Characteristics of Hate Speech Spreaders on Social Media [20.57872238271025]
ヘイトスピーチにおけるユーザ特性の役割を分析する。
社会的影響の少ないユーザーは、ヘイトスピーチをシェアする傾向にある。
政治的反トランプと反右派憎悪は、より大きな社会的影響力を持つユーザーによって再創造される。
論文 参考訳(メタデータ) (2023-10-24T12:17:48Z) - Exploring Cross-Cultural Differences in English Hate Speech Annotations: From Dataset Construction to Analysis [44.17106903728264]
ほとんどのヘイトスピーチデータセットは、単一の言語における文化的多様性を無視している。
そこで本研究では,CRoss文化の英語Hate音声データセットであるCREHateを紹介する。
CREHateのポストの56.2%のみが全国でコンセンサスを達成しており、ペアのラベル差が最も高いのは26%である。
論文 参考訳(メタデータ) (2023-08-31T13:14:47Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Beyond Plain Toxic: Detection of Inappropriate Statements on Flammable
Topics for the Russian Language [76.58220021791955]
本稿では,不合理性という二項的概念と,センシティブなトピックの多項的概念に基づいてラベル付けされた2つのテキストコレクションについて述べる。
不適切な概念を客観するために、クラウドソーシングではデータ駆動方式で定義する。
論文 参考訳(メタデータ) (2022-03-04T15:59:06Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Nipping in the Bud: Detection, Diffusion and Mitigation of Hate Speech
on Social Media [21.47216483704825]
本稿では,自動ヘイト緩和システムの構築を妨げる方法論的課題について述べる。
ソーシャルメディア上でのヘイトスピーチの拡散を制限するための一連のソリューションについて論じる。
論文 参考訳(メタデータ) (2022-01-04T03:44:46Z) - Countering Online Hate Speech: An NLP Perspective [34.19875714256597]
オンラインヘイトフル行動の傘語であるオンライン毒性は、オンラインヘイトスピーチのような形で現れている。
ソーシャルメディアを通じた大量コミュニケーションの増加は、オンラインヘイトスピーチの有害な結果をさらに悪化させる。
本稿では、ヘイトスピーチにおけるNLP対応手法に関する総合的な概念的枠組みと、オンラインヘイトスピーチ対策におけるNLPの現在の動向に関する徹底的な調査について述べる。
論文 参考訳(メタデータ) (2021-09-07T08:48:13Z) - Investigating Deep Learning Approaches for Hate Speech Detection in
Social Media [20.974715256618754]
表現の自由の誤用は、様々なサイバー犯罪や反社会的活動の増加につながった。
ヘイトスピーチ(Hate speech)は、社会的ファブリックの完全性に脅威をもたらす可能性があるため、他の問題と同様に真剣に対処する必要がある。
本稿では,ソーシャルメディアにおける様々なヘイトスピーチの検出に様々な埋め込みを応用したディープラーニングアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-29T17:28:46Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
新型コロナウイルスは、アジアのコミュニティをターゲットにしたソーシャルメディア上で人種差別や憎悪を引き起こしている。
我々は、Twitterのレンズを通して、反アジアヘイトスピーチの進化と普及について研究する。
私たちは、14ヶ月にわたる反アジア的憎悪と反音声のデータセットとして最大となるCOVID-HATEを作成します。
論文 参考訳(メタデータ) (2020-05-25T21:58:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。