論文の概要: Tracing Affordance and Item Adoption on Music Streaming Platforms
- arxiv url: http://arxiv.org/abs/2109.03538v2
- Date: Fri, 17 Jan 2025 14:54:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:57:00.322841
- Title: Tracing Affordance and Item Adoption on Music Streaming Platforms
- Title(参考訳): 音楽ストリーミングプラットフォームにおけるトレーディングアフォーマンスとアイテム採用
- Authors: Dougal Shakespeare, Camille Roth,
- Abstract要約: 本研究は,Deezerの2年間にわたる広義のユーザ行動を促す要因について検討した。
プラットフォーム・アプライアンスの利用と採用において,ユーザが非常に多様な行動を示すと仮定し,確認する。
結果は、レコメンデーション機能とレコメンデーションの両方の採用プラクティスに対して、明確な回答がないことを示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Popular music streaming platforms offer users a diverse network of content exploration through a triad of affordances: organic, algorithmic and editorial access modes. Whilst offering great potential for discovery, such platform developments also pose the modern user with daily adoption decisions on two fronts: platform affordance adoption and the adoption of recommendations therein. Following a carefully constrained set of Deezer users over a 2-year observation period, our work explores factors driving user behaviour in the broad sense, by differentiating users on the basis of their temporal daily usage, adoption of the main platform affordances, and the ways in which they react to them, especially in terms of recommendation adoption. Diverging from a perspective common in studies on the effects of recommendation, we assume and confirm that users exhibit very diverse behaviours in using and adopting the platform affordances. The resulting complex and quite heterogeneous picture demonstrates that there is no blanket answer for adoption practices of both recommendation features and recommendations.
- Abstract(参考訳): ポピュラーな音楽ストリーミングプラットフォームは、オーガニック、アルゴリズム、編集の3つのアクセスモードを通じて、多様なコンテンツ探索ネットワークを提供する。
発見のための大きな可能性を提供する一方で、このようなプラットフォーム開発は、プラットフォームアベイランスの採用とレコメンデーションの採用という2つの面で、現代のユーザによる日々の採用決定も引き起こす。
2年間の観察期間においてDeezerの利用者を注意深く拘束した上で、私たちの研究は、ユーザの時間的使用状況、主要なプラットフォーム価格の採用、そしてそれらに対する反応の仕方、特にレコメンデーション導入の観点から、ユーザの行動を促進する要因を広く研究している。
推薦の効果に関する研究に共通する視点から、プラットフォーム・アセスメントの利用と採用において、ユーザが非常に多様な行動を示すと仮定し、確認する。
その結果得られた複雑で異質な図は、レコメンデーション機能とレコメンデーションの両方の採用プラクティスに対して、明確な回答がないことを示している。
関連論文リスト
- Bypassing the Popularity Bias: Repurposing Models for Better Long-Tail Recommendation [0.0]
我々は,オンラインコンテンツプラットフォーム上で,パブリッシャー間でより公平な露出分布を実現することを目的としている。
そこで本稿では,産業推薦システムの既存コンポーネントを再利用して,表現不足の出版社に価値ある露出を提供する手法を提案する。
論文 参考訳(メタデータ) (2024-09-17T15:40:55Z) - System-2 Recommenders: Disentangling Utility and Engagement in Recommendation Systems via Temporal Point-Processes [80.97898201876592]
本稿では,過去のコンテンツインタラクションが,自己興奮型ホークスプロセスに基づくユーザの到着率に影響を及ぼす生成モデルを提案する。
そこで本研究では,システム1とシステム2のアンタングルを解消し,ユーザ利用によるコンテンツ最適化を可能にすることを解析的に示す。
論文 参考訳(メタデータ) (2024-05-29T18:19:37Z) - Beyond Item Dissimilarities: Diversifying by Intent in Recommender Systems [20.04619904064599]
我々は,提案システムの最終段階を対象とした確率論的意図に基づく全ページ多様化フレームワークを開発する。
われわれは、世界最大のビデオレコメンデーションプラットフォームであるYouTubeの意図多様化フレームワークを実験した。
論文 参考訳(メタデータ) (2024-05-20T18:52:33Z) - Measuring Strategization in Recommendation: Users Adapt Their Behavior to Shape Future Content [66.71102704873185]
実験と調査を行うことで,ユーザストラテジゼーションの試行を行う。
参加者の居住時間や「いいね!」の使用など,結果指標間での戦略化の強い証拠を見出す。
この結果から,プラットフォームはアルゴリズムがユーザの行動に与える影響を無視できないことが示唆された。
論文 参考訳(メタデータ) (2024-05-09T07:36:08Z) - User Welfare Optimization in Recommender Systems with Competing Content Creators [65.25721571688369]
本研究では,コンテンツ制作者間での競争ゲーム環境下で,システム側ユーザ福祉の最適化を行う。
本稿では,推奨コンテンツの満足度に基づいて,各ユーザの重みの列を動的に計算する,プラットフォームのためのアルゴリズムソリューションを提案する。
これらの重みはレコメンデーションポリシーやポストレコメンデーション報酬を調整するメカニズムの設計に利用され、それによってクリエイターのコンテンツ制作戦略に影響を与える。
論文 参考訳(メタデータ) (2024-04-28T21:09:52Z) - DOR: A Novel Dual-Observation-Based Approach for News Recommendation
Systems [2.7648976108201815]
本稿では,ニュースレコメンデーションの問題に対処する新しい手法を提案する。
我々のアプローチは二重観測の考え方に基づいている。
ニュースの内容とユーザの視点の両方を考慮することで、よりパーソナライズされた正確なレコメンデーションを提供することができる。
論文 参考訳(メタデータ) (2023-02-02T22:16:53Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
逐次リコメンデータモデルは、プラットフォーム上での氏のインタラクション履歴に基づいて、ユーザが次に対話する可能性のあるアイテムを予測することを学習する。
しかし、ほとんどのシーケンシャルなレコメンデータは、ユーザの意図に対する高いレベルの理解を欠いている。
したがって、インテントモデリングはユーザー理解と長期ユーザーエクスペリエンスの最適化に不可欠である。
論文 参考訳(メタデータ) (2022-11-17T19:00:24Z) - Personalizing Intervened Network for Long-tailed Sequential User
Behavior Modeling [66.02953670238647]
タイルユーザーは、共同トレーニング後のヘッドユーザーよりも大幅に品質の低いレコメンデーションに悩まされる。
テールユーザーで個別に訓練されたモデルは、限られたデータのために依然として劣った結果が得られる。
本稿では,テールユーザの推薦性能を大幅に向上させる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T02:50:19Z) - Two-Stage Neural Contextual Bandits for Personalised News Recommendation [50.3750507789989]
既存のパーソナライズされたニュースレコメンデーション手法は、ユーザの興味を搾取することに集中し、レコメンデーションにおける探索を無視する。
我々は、エクスプロイトと探索のトレードオフに対処する文脈的包括的レコメンデーション戦略に基づいて構築する。
我々はユーザとニュースにディープラーニング表現を使用し、ニューラルアッパー信頼境界(UCB)ポリシーを一般化し、加法的 UCB と双線形 UCB を一般化する。
論文 参考訳(メタデータ) (2022-06-26T12:07:56Z) - The Challenge of Understanding What Users Want: Inconsistent Preferences
and Engagement Optimization [2.690930520747925]
我々は、ユーザーが不整合な嗜好を持つメディア消費のモデルを開発する。
本稿では,ユーザの嗜好不整合モデルが日常体験に慣れ親しんだ現象をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2022-02-23T20:45:31Z) - Incentivising Exploration and Recommendations for Contextual Bandits
with Payments [2.5966580648312223]
本研究では,累積的社会福祉を最大化しながら,プラットフォームが項目固有の属性を学習し,サブリニアな後悔を実現する方法を示す。
弊社のアプローチは、eコマースストアやレコメンデーションエンジン、マッチングプラットフォーム上のユーザのエンゲージメント指標を改善できる。
論文 参考訳(メタデータ) (2020-01-22T02:26:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。