論文の概要: BotSpot: Deep Learning Classification of Bot Accounts within Twitter
- arxiv url: http://arxiv.org/abs/2109.03710v1
- Date: Wed, 8 Sep 2021 15:17:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-09 13:35:22.631994
- Title: BotSpot: Deep Learning Classification of Bot Accounts within Twitter
- Title(参考訳): BotSpot:Twitter内のボットアカウントのディープラーニング分類
- Authors: Christopher Braker, Stavros Shiaeles, Gueltoum Bendiab, Nick Savage,
Konstantinos Limniotis
- Abstract要約: Twitterのオープン化機能により、プログラムはTwitter APIを通じてTwitterアカウントを自動生成および制御できる。
ボットとして知られるこれらのアカウントは、ツイート、リツイート、フォロー、フォロー解除、他のアカウントへのダイレクトメッセージなどのアクションを自動的に実行する。
我々は,多層パーセプトロンニューラルネットワークとボットアカウントの9つの特徴を備えた,ディープラーニングを用いた新しいボット検出手法を提案する。
- 参考スコア(独自算出の注目度): 2.099922236065961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The openness feature of Twitter allows programs to generate and control
Twitter accounts automatically via the Twitter API. These accounts, which are
known as bots, can automatically perform actions such as tweeting, re-tweeting,
following, unfollowing, or direct messaging other accounts, just like real
people. They can also conduct malicious tasks such as spreading of fake news,
spams, malicious software and other cyber-crimes. In this paper, we introduce a
novel bot detection approach using deep learning, with the Multi-layer
Perceptron Neural Networks and nine features of a bot account. A web crawler is
developed to automatically collect data from public Twitter accounts and build
the testing and training datasets, with 860 samples of human and bot accounts.
After the initial training is done, the Multilayer Perceptron Neural Networks
achieved an overall accuracy rate of 92%, which proves the performance of the
proposed approach.
- Abstract(参考訳): Twitterのオープン化機能により、プログラムはTwitter APIを通じてTwitterアカウントを自動生成および制御できる。
ボットと呼ばれるこれらのアカウントは、ツイート、リツイート、フォロー、アンフォロー、その他のアカウントへのダイレクトメッセージなどのアクションを自動的に行うことができる。
また、フェイクニュース、スパム、悪意のあるソフトウェア、その他のサイバー犯罪の拡散などの悪意あるタスクを実行できる。
本稿では,多層パーセプトロンニューラルネットワークとボットアカウントの9つの特徴を用いた,ディープラーニングを用いた新しいボット検出手法を提案する。
webクローラは、公開twitterアカウントからデータを自動的に収集し、人間とボットのアカウントの860のサンプルを含むテストとトレーニングデータセットを構築するために開発されている。
最初のトレーニングが完了した後、多層型パーセプトロンニューラルネットワークは全体の精度92%を達成し、提案手法の性能を証明した。
関連論文リスト
- My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection [69.99192868521564]
Twitterのようなソーシャルプラットフォームは、数多くの不正なユーザーから包囲されている。
ソーシャルネットワークの構造のため、ほとんどの手法は攻撃を受けやすいグラフニューラルネットワーク(GNN)に基づいている。
本稿では,ボット検出モデルを欺いたノードインジェクションに基づく逆攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T03:09:48Z) - BotArtist: Generic approach for bot detection in Twitter via semi-automatic machine learning pipeline [47.61306219245444]
Twitterは、ボットや偽アカウントのターゲットとなり、偽情報や操作の拡散につながった。
本稿では,機械学習モデル開発に関連する課題に対処するために,セミオートマチック機械学習パイプライン(SAMLP)を提案する。
ユーザプロファイル機能に基づいたボット検出モデルBotArtistを開発した。
論文 参考訳(メタデータ) (2023-05-31T09:12:35Z) - From Online Behaviours to Images: A Novel Approach to Social Bot
Detection [0.3867363075280544]
特定のタイプの社会アカウントは、要求できないコンテンツ、過党派、宣伝的な情報を促進することが知られている。
まず、アカウントが実行するアクションのシーケンスを画像に変換する新しいアルゴリズムを提案する。
文献でよく知られた実際のアカウント/ボットアカウントデータセット上でのボット検出の最先端結果と比較する。
論文 参考訳(メタデータ) (2023-04-15T11:36:50Z) - Should we agree to disagree about Twitter's bot problem? [1.6317061277457]
ボットに類似した行動、検出方法、検査された人口に対する仮定が、Twitter上でのボットの割合の推定にどのように影響するかを論じる。
当社は、プラットフォームがユーザに影響を与える可能性のある脅威に対処する上で、警戒し、透明性を保ち、バイアスを負わないことの責任を強調しています。
論文 参考訳(メタデータ) (2022-09-20T21:27:25Z) - Manipulating Twitter Through Deletions [64.33261764633504]
Twitter上でのインフルエンスキャンペーンの研究は、公開APIを通じて得られたツイートから悪意のあるアクティビティを識別することに大きく依存している。
ここでは,1100万以上のアカウントによる10億以上の削除を含む,異常な削除パターンを網羅的かつ大規模に分析する。
少数のアカウントが毎日大量のツイートを削除していることがわかった。
まず、ツイートのボリューム制限が回避され、特定のアカウントが毎日2600万以上のツイートをネットワークに流すことができる。
第二に、調整されたアカウントのネットワークは、繰り返しのいいね!や、最終的に削除されるコンテンツとは違って、ランキングアルゴリズムを操作できる。
論文 参考訳(メタデータ) (2022-03-25T20:07:08Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - Writer Identification Using Microblogging Texts for Social Media
Forensics [53.180678723280145]
私たちは、文学的分析に広く使われている人気のあるスタイル的特徴と、URL、ハッシュタグ、返信、引用などの特定のTwitter機能を評価します。
我々は、様々なサイズの著者集合と、著者毎のトレーニング/テストテキストの量をテストする。
論文 参考訳(メタデータ) (2020-07-31T00:23:18Z) - Detection of Novel Social Bots by Ensembles of Specialized Classifiers [60.63582690037839]
悪意ある俳優は、社会ボットとして知られるアルゴリズムによって部分的に制御される不正なソーシャルメディアアカウントを作成し、誤情報を広め、オンラインでの議論を扇動する。
異なるタイプのボットが、異なる行動特徴によって特徴づけられることを示す。
本稿では,ボットのクラスごとに専門的な分類器を訓練し,それらの決定を最大ルールで組み合わせる,教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-11T22:59:59Z) - Twitter Bot Detection Using Bidirectional Long Short-term Memory Neural
Networks and Word Embeddings [6.09170287691728]
本稿では,Twitterボットを人間アカウントと区別するために,単語埋め込みを用いたリカレントニューラルネットワークを開発した。
実験により,既存の最先端ボット検出システムと比較して,本手法が競争力を発揮することが示された。
論文 参考訳(メタデータ) (2020-02-03T17:07:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。